Millipore Sigma Vibrant Logo
 

quinazolines


19 Results Advanced Search  
Showing
Documents (11)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Novel chemical class of pUL97 protein kinase-specific inhibitors with strong anticytomegaloviral activity. 15504835

    Human cytomegalovirus (HCMV) is a major human pathogen frequently associated with life-threatening disease in immunosuppressed patients and newborns. The HCMV UL97-encoded protein kinase (pUL97) represents an important determinant of viral replication. Recent studies demonstrated that pUL97-specific kinase inhibitors are powerful tools for the control of HCMV replication. We present evidence that three related quinazoline compounds are potent inhibitors of the pUL97 kinase activity and block in vitro substrate phosphorylation, with 50% inhibitory concentrations (IC(50)s) between 30 and 170 nM. Replication of HCMV in primary human fibroblasts was suppressed with a high efficiency. The IC(50)s of these three quinazoline compounds (2.4 +/- 0.4, 3.4 +/- 0.6, and 3.9 +/- 1.1 microM, respectively) were in the range of the IC(50) of ganciclovir (1.2 +/- 0.2 microM), as determined by the HCMV green fluorescent protein-based antiviral assay. Importantly, the quinazolines were demonstrated to have strong inhibitory effects against clinical HCMV isolates, including ganciclovir- and cidofovir-resistant virus variants. Moreover, in contrast to ganciclovir, the formation of resistance to the quinazolines was not observed. The mechanisms of action of these compounds were confirmed by kinetic analyses with infected cells. Quinazolines specifically inhibited viral early-late protein synthesis but had no effects at other stages of the replication cycle, such as viral entry, consistent with a blockage of the pUL97 function. In contrast to epithelial growth factor receptor inhibitors, quinazolines affected HCMV replication even when they were added hours after virus adsorption. Thus, our findings indicate that quinazolines are highly efficient inhibitors of HCMV replication in vitro by targeting pUL97 protein kinase activity.
    Document Type:
    Reference
    Product Catalog Number:
    MAB810
  • Design, synthesis, and evaluation of quinazoline T cell proliferation inhibitors. 20674367

    We report here on a class of quinazoline molecules that inhibit T cell proliferation. The most potent compound N-p-tolyl-2-(3,4,5-trimethoxyphenyl)quinazolin-4-amine (S101) and its close analogs were found to inhibit the proliferation of T cells from human peripheral blood mononuclear cells (PBMC) and Jurkat cells, with IC(50) in the sub-micromolar range. The inhibitor induced G2 cell cycle arrest but did not inhibit IL-2 secretion. The anti-proliferative effect correlated with inhibition of the tyrosine phosphorylation of SLP-76, a molecular element in the signaling pathway of the T cell receptor (TCR). The inhibitor restrained proliferation of lymphocytes with much higher potency than non-hematopoietic cells. This new class of specific T cell proliferation inhibitors may serve as lead molecules for the development of agents aimed at diseases in which T cell signaling plays a role and agents to induce tolerance to grafted tissues or organs.
    Document Type:
    Reference
    Product Catalog Number:
    05-253
    Product Catalog Name:
    Anti-ZAP-70 Antibody, clone 2F3.2
  • Therapeutic reactivation of mutant p53 protein by quinazoline derivatives. 21912889

    Purpose The human tumour suppressor protein p53 is mutated in nearly half of human tumours and most mutant proteins have single amino acid changes. Several drugs including the quinazoline derivative 1 (CP-31398) have been reported to restore p53 activity in mutant cells. The side chain of 1 contains a styryl linkage that compromises its stability and we wished to explore the activity of analogues containing more stable side chains. Methods Reactivation of p53 function was measured by flow cytometry as the ability to potentiate radiation-induced G(1)-phase cell cycle arrest and by western blotting to determine expression of p21(WAF1). DNA binding was measured by competition with ethidium and preliminary pharmacological and xenograft studies were carried out. Results Screening of analogues for potentiation of radiation-induced G(1)-phase cell cycle arrest using NZOV11, an ovarian tumour cell line containing a p53(R248Q) mutation, demonstrated that the (2-benzofuranyl)-quinazoline derivative 5 was among the most active of the analogues. Compound 5 showed similar effects in several other p53 mutant human tumour cell lines but not in a p53 null cell line. 5 also potentiated p21(WAF1) expression induced by radiation. DNA binding affinity was measured and found to correlate with p53 reactivation activity. Plasma concentrations of 5 in mice were sufficient to suggest in vivo activity and a small induced tumour growth delay (7 days) of NZM4 melanoma xenografts was observed. Conclusion Compound 5 restores p53-like function to a human tumour cells lines expressing a variety of mutant p53 proteins, thus providing a basis for the design of further new drugs.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501R
    Product Catalog Name:
    Anti-Actin Antibody,clone C4
  • Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pha ... 16902153

    Tandutinib (MLN518/CT53518) is a novel quinazoline-based inhibitor of the type III receptor tyrosine kinases: FMS-like tyrosine kinase 3 (FLT3), platelet-derived growth factor receptor (PDGFR), and KIT. Because of the correlation between FLT3 internal tandem duplication (ITD) mutations and poor prognosis in acute myelogenous leukemia (AML), we conducted a phase 1 trial of tandutinib in 40 patients with either AML or high-risk myelodysplastic syndrome (MDS). Tandutinib was given orally in doses ranging from 50 mg to 700 mg twice daily The principal dose-limiting toxicity (DLT) of tandutinib was reversible generalized muscular weakness, fatigue, or both, occurring at doses of 525 mg and 700 mg twice daily. Tandutinib's pharmacokinetics were characterized by slow elimination, with achievement of steady-state plasma concentrations requiring greater than 1 week of dosing. Western blotting showed that tandutinib inhibited phosphorylation of FLT3 in circulating leukemic blasts. Eight patients had FLT3-ITD mutations; 5 of these were evaluable for assessment of tandutinib's antileukemic effect. Two of the 5 patients, treated at 525 mg and 700 mg twice daily, showed evidence of antileukemic activity, with decreases in both peripheral and bone marrow blasts. Tandutinib at the MTD (525 mg twice daily) should be evaluated more extensively in patients with AML with FLT3-ITD mutations to better define its antileukemic activity.
    Document Type:
    Reference
    Product Catalog Number:
    AP304P
  • Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). 14576842

    Observations of functional adenosine triphosphate (ATP)-dependent drug efflux in certain multidrug-resistant cancer cell lines without overexpression of P-glycoprotein or multidrug resistance protein (MRP) family members suggested the existence of another ATP-binding cassette (ABC) transporter capable of causing cancer drug resistance. In one such cell line (MCF-7/AdrVp), the overexpression of a novel member of the G subfamily of ABC transporters was found. The new transporter was termed the breast cancer resistance protein (BCRP), because of its identification in MCF-7 human breast carcinoma cells. BCRP is a 655 amino-acid polypeptide, formally designated as ABCG2. Like all members of the ABC G (white) subfamily, BCRP is a half transporter. Transfection and enforced overexpression of BCRP in drug-sensitive MCF-7 or MDA-MB-231 cells recapitulates the drug-resistance phenotype of MCF-7/AdrVp cells, consistent with current evidence suggesting that functional BCRP is a homodimer. BCRP maps to chromosome 4q22, downstream from a TATA-less promoter. The spectrum of anticancer drugs effluxed by BCRP includes mitoxantrone, camptothecin-derived and indolocarbazole topoisomerase I inhibitors, methotrexate, flavopiridol, and quinazoline ErbB1 inhibitors. Transport of anthracyclines is variable and appears to depend on the presence of a BCRP mutation at codon 482. Potent and specific inhibitors of BCRP are now being developed, opening the door to clinical applications of BCRP inhibition. Owing to tissue localization in the placenta, bile canaliculi, colon, small bowel, and brain microvessel endothelium, BCRP may play a role in protecting the organism from potentially harmful xenobiotics. BCRP expression has also been demonstrated in pluripotential "side population" stem cells, responsible for the characteristic ability of these cells to exclude Hoechst 33342 dye, and possibly for the maintenance of the stem cell phenotype. Studies are emerging on the role of BCRP expression in drug resistance in clinical cancers. More prospective studies are needed, preferably combining BCRP protein or mRNA quantification with functional assays, in order to determine the contribution of BCRP to drug resistance in human cancers.
    Document Type:
    Reference
    Product Catalog Number:
    MAB4155
    Product Catalog Name:
    Anti-BCRP1 Antibody, clone 5D3
  • Screening of drugs that suppress Ste11 MAPKKK activation in yeast identified a c-Abl tyrosine kinase inhibitor. 17341836

    The yeast MAPKKK Ste11 activates three MAP kinase pathways, including pheromone signaling, osmosensing, and pseudohyphal/invasive growth pathways. We identified two chemical compounds, BTB03006 and GK03225, that suppress growth defects induced by Ste11 activation in diploid yeast cells. BTB03006, but not GK03225, was found to suppress growth defects induced by both alpha-factor and Ste4 G(beta) overexpression in the pheromone signaling pathway, suggesting that GK03225 is an osmosensing pathway-specific inhibitor. We also performed genome-wide suppressor analysis for Ste11 activation, using a yeast deletion strains collection, and identified PBS2 and HOG1, and several genes associated with chaperone functions, which represent potential target proteins of the drugs screened from Ste11 activation. GK03225 possesses an Iressa-like quinazoline ring structure, and its chemical analog, 11N-078, suppresses c-Abl human tyrosine kinase activity. These results suggest that drug screening in yeast can identify human tyrosine kinase inhibitors and other drugs for human diseases.
    Document Type:
    Reference
    Product Catalog Number:
    05-321
    Product Catalog Name:
    Anti-Phosphotyrosine Antibody, clone 4G10®
  • A chemical corrector modifies the channel function of F508del-CFTR. 20501743

    The deletion of Phe-508 (F508del) constitutes the most prevalent cystic fibrosis-causing mutation. This mutation leads to cystic fibrosis transmembrane conductance regulator (CFTR) misfolding and retention in the endoplasmic reticulum and altered channel activity in mammalian cells. This folding defect can however be partially overcome by growing cells expressing this mutant protein at low (27 degrees C) temperature. Chemical "correctors" have been identified that are also effective in rescuing the biosynthetic defect in F508del-CFTR, thereby permitting its functional expression at the cell surface. The mechanism of action of chemical correctors remains unclear, but it has been suggested that certain correctors [including 4-cyclohexyloxy-2-(1-[4-(4-methoxy-benzenesulfonyl)-piperazin-1-yl]-ethyl)-quinazoline (VRT-325)] may act to promote trafficking by interacting directly with the mutant protein. To test this hypothesis, we assessed the effect of VRT-325 addition on the channel activity of F508del-CFTR after its surface expression had been "rescued" by low temperature. It is noteworthy that short-term pretreatment with VRT-325 [but not with an inactive analog, 4-hydroxy-2-(1-[4-(4-methoxy-benzenesulfonyl)-piperazin-1-yl]-ethyl)-quinazoline (VRT-186)], caused a modest but significant inhibition of cAMP-mediated halide flux. Furthermore, VRT-325 decreased the apparent ATP affinity of purified and reconstituted F508del-CFTR in our ATPase activity assay, an effect that may account for the decrease in channel activity by temperature-rescued F508del-CFTR. These findings suggest that biosynthetic rescue mediated by VRT-325 may be conferred (at least in part) by direct modification of the structure of the mutant protein, leading to a decrease in its ATP-dependent conformational dynamics. Therefore, the challenge for therapy discovery will be the design of small molecules that bind to promote biosynthetic maturation of the major mutant without compromising its activity in vivo.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3480
    Product Catalog Name:
    Anti-CFTR Antibody, a.a. 1370-1380, clone M3A7
  • Epidermal growth factor receptor-dependent and -independent pathways in hydrogen peroxide-induced mitogen-activated protein kinase activation in cardiomyocytes and heart ... 15574683

    Mild doses of oxidative stress in the heart correlate with the induction of apoptosis or hypertrophy in cardiomyocytes (CMCs) and fibrosis or proliferation of fibroblasts. Three branches of mitogen-activated protein kinases (MAPKs), i.e., c-Jun N-terminal kinases (JNKs), extracellular signal-related kinases 1 and 2 (ERK1/2), and p38, are activated by oxidants in a variety of cell types, including CMCs. However, the initiation process of these signaling pathways remains unsolved. We explored the role of the epidermal growth factor (EGF) receptor in H(2)O(2)-induced MAPK activation using two different cell types from the same organ: CMCs and heart fibroblasts (HFs). Pretreatment of each cell type with EGF revealed differences in how CMCs and HFs responded to subsequent treatment with H(2)O(2): in CMCs, the second treatment resulted in little further activation of JNKs and ERK1/2, whereas HFs retained the full response of JNKs and ERK1/2 activation by H(2)O(2) regardless of EGF pretreatment. AG-1478 [4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline], a pharmacologic inhibitor of the EGF receptor tyrosine kinase, inhibited JNK and ERK1/2 activations but not p38 in both cell types. The data using the Src inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] resemble those found when using AG-1478 in either cell type. Pharmacologic inhibitors of matrix metalloproteinases (MMPs) further illustrated the difference between the two cell types. In HFs, MMP inhibitors GM6001 [N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-l-tryptophan methylamide] and BB2516 [[2S-[N4(R(*)),2R(*),3S(*)]]-N4-[2,2-dimethyl-1-[(methylamino)carbonyl]propyl]-N1,2-dihydroxy-3-(2-methylpropyl)butanediamide, marimastat] inhibited JNKs and ERK1/2 activation without affecting p38 activation by H(2)O(2) inhibitors. In contrast, these MMP failed to significantly inhibit the activation of JNKs, ERKs, or p38 in CMCs. These data suggest the complexity of the cell type-dependent signaling web initiated by oxidants in the heart.
    Document Type:
    Reference
    Product Catalog Number:
    06-248
    Product Catalog Name:
    Anti-IRS1 Antibody
  • Novel irreversible epidermal growth factor receptor inhibitors by chemical modulation of the cysteine-trap portion. 20151670

    Irreversible EGFR inhibitors can circumvent acquired resistance to first-generation reversible, ATP-competitive inhibitors in the treatment of non-small-cell lung cancer. They contain both a driver group, which assures target recognition, and a warhead, generally an acrylamide or propargylamide fragment that binds covalently to Cys797 within the kinase domain of EGFR. We performed a systematic exploration of the role for the warhead group, introducing different cysteine-trapping fragments at position 6 of a traditional 4-anilinoquinazoline scaffold. We found that different reactive groups, including epoxyamides (compounds 3-6) and phenoxyacetamides (compounds 7-9), were able to irreversibly inhibit EGFR. In particular, at significant lower concentrations than gefitinib (1), (2R,3R)-N-(4-(3-bromoanilino)quinazolin-6-yl)-3-(piperidin-1-ylmethyl)oxirane-2-carboxamide (6) inhibited EGFR autophosphorylation and downstream signaling pathways, suppressed proliferation, and induced apoptosis in gefitinib-resistant NSCLC H1975 cells, harboring the T790M mutation in EGFR.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Effect of BIX-01294 on H3K9me2 levels and the imprinted gene Snrpn in mouse embryonic fibroblast cells. 26285804

    Histone H3 lysine 9 dimethylation (H3K9me2) hypermethylation is thought to be a major influential factor in cellular reprogramming, such as somatic cell nuclear transfer (SCNT) and induction of pluripotent stem cells (iPSCs). The diazepin-quinazolin-amine derivative (BIX-01294) specifically inhibits the activity of histone methyltransferase EHMT2 (euchromatic histone-lysine N-methyltransferase 2) and reduces H3K9me2 levels in cells. The imprinted gene small nuclear ribonucleoprotein N (Snrpn) is of particular interest because of its important biological functions. The objective of the present study was to investigate the effect of BIX-01294 on H3K9me2 levels and changes in Snrpn DNA methylation and histone H3K9me2 in mouse embryonic fibroblasts (MEFs). Results showed that 1.3 μM BIX-01294 markedly reduced global levels of H3K9me2 with almost no cellular toxicity. There was a significant decrease in H3K9me2 in promoter regions of the Snrpn gene after BIX-01294 treatment. A significant increase in methylation of the Snrpn differentially methylated region 1 (DMR1) and slightly decreased transcript levels of Snrpn were found in BIX-01294-treated MEFs. These results suggest that BIX-01294 may reduce global levels of H3K9me2 and affect epigenetic modifications of Snrpn in MEFs.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™