Millipore Sigma Vibrant Logo
 

quinoline


31 Results Advanced Search  
Showing
Documents (9)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • 2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) promotes mouse hepatocarcinogenesis by activating transforming growth factor-β and Wnt/β-catenin signaling pathways. 22094457

    The purposes of the present study were to investigate the modifying effects of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a genotoxic carcinogen produced during cooking of protein-rich foods, and elucidate underlying mechanisms in a two-stage hepatocarcinogenesis mice model. Six-week-old B6C3F1 mice were subjected to two-thirds partial hepatectomy at the beginning of the study, followed by an intraperitoneal injection of diethylnitrosamine on day 1. Starting 1 week later, they were fed diets containing IQ at doses of 30, 100, or 300 ppm for 39 weeks. A dose-dependent trend for increase in eosinophilic altered foci as well as eosinophilic hepatocellular adenomas was observed, along with significant elevation in the incidence of hepatocellular carcinomas in the 100- and 300-ppm IQ groups as compared with initiation control group. Furthermore, IQ elevated the protein expression levels of Wnt1, transforming growth factor-β (TGF-β), TGF-β receptors 1 and 2 (TβR1 and TβR2), and phosphorylated c-Jun (p-c-Jun), while suppressing those of E-cadherin and p21(WAF1/Cip1). Moreover, translocation of β-catenin to the nuclei as well as upregulated nuclear expression of c-Myc and cyclin D1, which are downstream targets of β-catenin and p-c-Jun, were detected at 100 and 300 ppm. These findings suggest that IQ exerts dose-dependent promoting effects on mice hepatocarcinogenesis by activating TGF-β and Wnt/β-catenin signaling pathways and inhibiting cell adhesion.
    Document Type:
    Reference
    Product Catalog Number:
    07-146
    Product Catalog Name:
    Anti-Histone H2A (acidic patch) Antibody
  • A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. 19417133

    Reactivation of silenced tumor suppressor genes by 5-azacytidine (Vidaza) and its congener 5-aza-2'-deoxycytidine (decitabine) has provided an alternate approach to cancer therapy. We have shown previously that these drugs selectively and rapidly induce degradation of the maintenance DNA methyltransferase (DNMT) 1 by a proteasomal pathway. Because the toxicity of these compounds is largely due to their incorporation into DNA, it is critical to explore novel, nonnucleoside compounds that can effectively reactivate the silenced genes. Here, we report that a quinoline-based compound, designated SGI-1027, inhibits the activity of DNMT1, DNMT3A, and DNMT3B as well M. SssI with comparable IC(50) (6-13 micromol/L) by competing with S-adenosylmethionine in the methylation reaction. Treatment of different cancer cell lines with SGI-1027 resulted in selective degradation of DNMT1 with minimal or no effects on DNMT3A and DNMT3B. At a concentration of 2.5 to 5 micromol/L (similar to that of decitabine), complete degradation of DNMT1 protein was achieved within 24 h without significantly affecting its mRNA level. MG132 blocked SGI-1027-induced depletion of DNMT1, indicating the involvement of proteasomal pathway. Prolonged treatment of RKO cells with SGI-1027 led to demethylation and reexpression of the silenced tumor suppressor genes P16, MLH1, and TIMP3. Further, this compound did not exhibit significant toxicity in a rat hepatoma (H4IIE) cell line. This study provides a novel class of DNA hypomethylating agents that have the potential for use in epigenetic cancer therapy.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue. 19128485

    Topoisomerase II poisons are in clinical use as anti-cancer therapy for decades and work by stabilizing the enzyme-induced DNA breaks. In contrast, catalytic inhibitors block the enzyme before DNA scission. Although several catalytic inhibitors of topoisomerase II have been described, preclinical concepts for exploiting their anti-proliferative activity based on molecular characteristics of the tumor cell have only recently started to emerge. Topoisomerase II is an ATPase and uses the energy derived from ATP hydrolysis to orchestrate the movement of the DNA double strands along the enzyme. Thus, interfering with ATPase function with low molecular weight inhibitors that target the nucleotide binding pocket should profoundly affect cells that are committed to undergo mitosis.Here we describe the discovery and characterization of a novel purine diamine analogue as a potent ATP-competitive catalytic inhibitor of topoisomerase II. Quinoline aminopurine compound 1 (QAP 1) inhibited topoisomerase II ATPase activity and decatenation reaction at sub-micromolar concentrations, targeted both topoisomerase II alpha and beta in cell free assays and, using a quantitative cell-based assay and a chromosome segregation assay, displayed catalytic enzyme inhibition in cells. In agreement with recent hypothesis, we show that BRCA1 mutant breast cancer cells have increased sensitivity to QAP 1.The results obtained with QAP 1 demonstrate that potent and selective catalytic inhibition of human topoisomerase II function with an ATP-competitive inhibitor is feasible. Our data suggest that further drug discovery efforts on ATP-competitive catalytic inhibitors are warranted and that such drugs could potentially be developed as anti-cancer therapy for tumors that bear the appropriate combination of molecular alterations.
    Document Type:
    Reference
    Product Catalog Number:
    05-636
    Product Catalog Name:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301
  • Carboxyl-terminal proteolytic processing of CUX1 by a caspase enables transcriptional activation in proliferating cells. 17681953

    Proteolytic processing at the end of the G(1) phase generates a CUX1 isoform, p110, which functions either as a transcriptional activator or repressor and can accelerate entry into S phase. Here we describe a second proteolytic event that generates an isoform lacking two active repression domains in the COOH terminus. This processing event was inhibited by treatment of cells with synthetic and natural caspase inhibitors. In vitro, several caspases generated a processed isoform that co-migrated with the in vivo generated product. In cells, recombinant CUX1 proteins in which the region of cleavage was deleted or in which Asp residues were mutated to Ala, were not proteolytically processed. Importantly, this processing event was not associated with apoptosis, as assessed by terminal dUTP nick end labeling assay, cytochrome c localization, poly(ADP-ribose) polymerase cleavage, and fluorescence-activated cell sorting. Moreover, processing was observed in S phase but not in early G(1), suggesting that it is regulated through the cell cycle. The functional importance of this processing event was revealed in reporter and cell cycle assays. A recombinant, processed, CUX1 protein was a more potent transcriptional activator of several cell cycle-related genes and was able to accelerate entry into S phase, whereas mutants that could not be processed were inactive in either assay. Conversely, cells treated with the quinoline-Val Asp-2,6-difluorophenoxymethylketone caspase inhibitor proliferated more slowly and exhibited delayed S phase entry following exit from quiescence. Together, our results identify a substrate of caspases in proliferating cells and suggest a mechanism by which caspases can accelerate cell cycle progression.
    Document Type:
    Reference
    Product Catalog Number:
    S7110
    Product Catalog Name:
    ApopTag® Fluorescein In Situ Apoptosis Detection Kit
  • Modeling the interaction between quinolinate and the receptor for advanced glycation end products (RAGE): relevance for early neuropathological processes. 25757085

    The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function.
    Document Type:
    Reference
    Product Catalog Number:
    MAB377
    Product Catalog Name:
    Anti-NeuN Antibody, clone A60
  • A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechan ... 18198212

    Orexins acting at the G protein-coupled receptor (GPCR) OX1R have recently been shown to promote dramatic apoptosis in cancer cells. We report here that orexin-induced apoptosis is driven by an immunoreceptor tyrosine-based inhibitory motif (ITIM) (IIY(358)NFL) present in the OX1R. This effect is mediated by SHP-2 phosphatase recruitment via a mechanism that requires Gq protein but is independent of phospholipase C activation. This is based on the following observations: 1) mutation of Y(358) into F abolished orexin-induced tyrosine phosphorylation in ITIM, orexin-induced apoptosis, and uncoupled OX1R from Gq protein in transfected Chinese hamster ovary (CHO) cells; 2) orexin-induced apoptosis in CHO cells expressing recombinant OX1R and in colon cancer cells expressing the native receptor was abolished by treatment with the tyrosine phosphatase inhibitor PAO and by transfection with a dominant-negative mutant of SHP-2; 3) orexins were unable to promote apoptosis in fibroblast cells invalidated for the G alpha q subunit and transfected with OX1R cDNA, whereas they promoted apoptosis in cells equipped with G alpha q and OX1R; and 4) the phospholipase C inhibitor U-73122 blocked orexin-stimulated inositol phosphate formation, whereas it had no effect on orexin-induced apoptosis in CHO cells expressing OX1R. These data unravel a novel mechanism, whereby ITIM-expressing GPCRs may trigger apoptosis.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation. 16571773

    According to the "indirect" excitotoxicity hypothesis, mitochondrial defects increase Ca2+ entry into neurons by rendering NMDA-R hypersensitive to glutamate. We tested this hypothesis by investigating in the rat striatum and cultured striatal cells how partial mitochondrial complex II inhibition produced by 3-nitropropionic acid (3NP) modifies the toxicity of the NMDA-R agonist quinolinate (QA). We showed that nontoxic 3NP treatment, leading to partial inhibition of complex II activity, greatly exacerbated striatal degeneration produced by slightly toxic QA treatment through an "all-or-nothing" process. The potentiation of QA-induced cell death by 3NP was associated with increased calpain activity and massive calpain-mediated cleavage of several postsynaptic proteins, suggesting major neuronal Ca2+ deregulation in the striatum. However, Ca2+ anomalies probably do not result from NMDA-R hypersensitivity. Indeed, brain imaging experiments using [(18)F]fluorodeoxyglucose indirectly showed that 3NP did not increase QA-induced ionic perturbations at the striatal glutamatergic synapses in vivo. Consistent with this, the exacerbation of QA toxicity by 3NP was not related to an increase in the QA-induced entry of 45Ca2+ into striatal neurons. The present results demonstrate that the potentiation of NMDA-R-mediated excitotoxicity by mitochondrial defects involves primarily intracellular Ca2+ deregulation, in the absence of NMDA-R hypersensitivity.
    Document Type:
    Reference
    Product Catalog Number:
    MAB377
    Product Catalog Name:
    Anti-NeuN Antibody, clone A60
  • Tryptophan and the immune response. 12848846

    The immune system continuously modulates the balance between responsiveness to pathogens and tolerance to non-harmful antigens. The mechanisms that mediate tolerance are not well understood, but recent findings have implicated tryptophan catabolism through the kynurenine metabolic pathway as one of many mechanisms involved. The enzymes that break down tryptophan through this pathway are found in numerous cell types, including cells of the immune system. Some of these enzymes are induced by immune activation, including the rate limiting enzyme present in macrophages and dendritic cells, indoleamine 2,3-dioxygenase (IDO). It has recently been found that inhibition of IDO can result in the rejection of allogenic fetuses, suggesting that tryptophan breakdown is necessary for maintaining aspects of immune tolerance. Two theories have been proposed to explain how tryptophan catabolism facilitates tolerance. One theory posits that tryptophan breakdown suppresses T cell proliferation by dramatically reducing the supply of this critical amino acid. The other theory postulates that the downstream metabolites of tryptophan catabolism act to suppress certain immune cells, probably by pro-apoptotic mechanisms. Reconciling these disparate views is crucial to understanding immune-related tryptophan catabolism and the roles it plays in immune tolerance. In this review we examine the issue in detail, and offer additional insight provided by studies with antibodies to quinolinate, a tryptophan catabolite which is also necessary for nicotinamide adenine dinucleotide (NAD +) production. In addition to the immunomodulatory actions of tryptophan catabolites, we discuss the possible involvement of quinolinate as a means of replenishing NAD + in leucocytes, which is depleted by oxidative stress during an immune response.
    Document Type:
    Reference
    Product Catalog Number:
    05-840
    Product Catalog Name:
    Anti-IDO (Indoleamine 2,3-Dioxygenase) Antibody, clone 10.1
  • Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos). 19457082

    Apoptosis-inducing factor (AIF) is critical for poly(ADP-ribose) polymerase-1 (PARP-1)-dependent cell death (parthanatos). The molecular mechanism of mitochondrial AIF release to the nucleus remains obscure, although a possible role of calpain I has been suggested. Here we show that calpain is not required for mitochondrial AIF release in parthanatos. Although calpain I cleaved recombinant AIF in a cell-free system in intact cells under conditions where endogenous calpain was activated by either NMDA or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) administration, AIF was not cleaved, and it was released from mitochondria to the nucleus in its 62-kDa uncleaved form. Moreover, NMDA administration under conditions that failed to activate calpain still robustly induced AIF nuclear translocation. Inhibition of calpain with calpastatin or genetic knockout of the regulatory subunit of calpain failed to prevent NMDA- or MNNG-induced AIF nuclear translocation and subsequent cell death, respectively, which was markedly prevented by the PARP-1 inhibitor, 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-iso-quinolinone. Our study clearly shows that calpain activation is not required for AIF release during parthanatos, suggesting that other mechanisms rather than calpain are involved in mitochondrial AIF release in parthanatos.
    Document Type:
    Reference
    Product Catalog Number:
    05-100
  • «
  • <
  • 1
  • >
  • »