Millipore Sigma Vibrant Logo
 

rabbit+anti-calbindin+d-28k


9 Results Advanced Search  
Showing
Documents (7)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Foxp4 is essential in maintenance of PURKINJE cell dendritic arborization in the mouse cerebellum. 20951773

    Purkinje cells (PCs) are one of the principal neurons in the cerebellar cortex that play a central role in the coordination of fine-tuning body movement and balance. To acquire normal cerebellum function, PCs develop extensive dendritic arbors that establish synaptic connections with the parallel fibers of granule cells to form the proper neuronal circuitry. Therefore, dendritic arborization of PCs is an important developmental step to construct the mature neural network in the cerebellum. However, the genetic control of this process is not fully understood. In this study, Foxp4, a forkhead transcription factor that is expressed specifically in migrating and mature PCs of cerebellum from embryonic stages to adulthood, was knocked down by small interfering RNA (siRNA) in organotypic cerebellar slice culture. When Foxp4 expression was knocked down at postnatal day 5 (P5), no abnormalities for early dendritic remodeling of PCs were observed. However, when Foxp4 was knocked down in P10 cerebellar slices, the organization of PC dendritic arbors was highly impaired, leaving hypoplastic but non-apoptotic cell bodies. The radial alignment of Bergmann glial fibers that associated with PC dendrites was also lost. These results suggest that Foxp4 is dispensable for the early PC dendrite outgrowth, but is essential for the maintenance of PC dendritic arborization and subsequent association with Bergmann glial fibers.
    Document Type:
    Reference
    Product Catalog Number:
    AB1778
  • Caytaxin deficiency disrupts signaling pathways in cerebellar cortex. 17092653

    The genetically dystonic (dt) rat, an autosomal recessive model of generalized dystonia, harbors an insertional mutation in Atcay. As a result, dt rats are deficient in Atcay transcript and the neuronally-restricted protein caytaxin. Previous electrophysiological and biochemical studies have defined olivocerebellar pathways, particularly the climbing fiber projection to Purkinje cells, as sites of significant functional abnormality in dt rats. In normal rats, Atcay transcript is abundantly expressed in the granular and Purkinje cell layers of cerebellar cortex. To better understand the consequences of caytaxin deficiency in cerebellar cortex, differential gene expression was examined in dt rats and their normal littermates. Data from oligonucleotide microarrays and quantitative real-time reverse transcriptase-PCR (QRT-PCR) identified phosphatidylinositol signaling pathways, calcium homeostasis, and extracellular matrix interactions as domains of cellular dysfunction in dt rats. In dt rats, genes encoding the corticotropin-releasing hormone receptor 1 (CRH-R1, Crhr1) and plasma membrane calcium-dependent ATPase 4 (PMCA4, Atp2b4) showed the greatest up-regulation with QRT-PCR. Immunocytochemical experiments demonstrated that CRH-R1, CRH, and PMCA4 were up-regulated in cerebellar cortex of mutant rats. Along with previous electrophysiological and pharmacological studies, our data indicate that caytaxin plays a critical role in the molecular response of Purkinje cells to climbing fiber input. Caytaxin may also contribute to maturational events in cerebellar cortex.
    Document Type:
    Reference
    Product Catalog Number:
    AB1778
  • Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain. 16690755

    The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo (Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons (up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Tissue transglutaminase crosslinks ataxin-1: possible role in SCA1 pathogenesis. 17045396

    Transglutaminase type 2 (TG2) has recently been implicated in crosslinking of mutant huntingtin protein into aggregates. Here we show that TG2 also crosslinks spinocerebellar ataxia-1 (SCA1) gene product ataxin-1. HeLa cell lysates expressing GFP tagged ataxin-1 with 2, 30 or 82 glutamines showed covalent crosslinking of ataxin-1 when incubated with exogenously added TG2. This crosslinking was inhibited by TG2 inhibitor cystamine. SCA1 transgenic mice which overexpress the mutant ataxin-1 in cerebellar Purkinje cells showed elevated nuclear TG2 in the absence of ataxin-1 nuclear aggregates. The addition of purified TG2 to the nuclear extracts or addition of SCA1 nuclear TG2 to GFP-Q82 HeLa cell lysates resulted in the formation of insoluble aggregates. These data indicate that ataxin-1 is a substrate of TG2. Further, in SCA1 TG2 may translocate to the nucleus in response to nuclear accumulation of mutant ataxin-1 at early stages of the disease.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1574
    Product Catalog Name:
    Anti-Polyglutamine-Expansion Diseases Marker Antibody, clone 5TF1-1C2
  • Metabotropic glutamate receptors modulate the NMDA- and AMPA-induced gene expression in neocortical interneurons. 16407481

    Group I metabotropic glutamate receptors (mGluRIs) can be colocalized with ionotropic glutamate receptors in postsynaptic membranes. We have investigated whether mGluRIs alter the gene transcription induced by N-methyl-D-aspartate (NMDA) and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) receptors in rat neocortical gamma-aminobutyric acid (GABA) interneurons. In cultures of dissociated interneurons, the mGluRI antagonists LY367385 and MPEP reduced the increase in phosphorylation of the transcription factor CREB induced by NMDA as well as the expression of the proenkephalin (PEnk) gene. In contrast, they enhanced the AMPA-induced CREB phosphorylation and PEnk gene expression. Stimulation of the mGluRIs was due to network activity that caused the release of endogenous glutamate and could be blocked by tetrodotoxin. In organotypic cultures of neocortex, endogenous glutamate enhanced the PEnk gene expression by acting on NMDA and AMPA receptors. These effects were modulated via mGluRIs. In patch-clamp experiments and in biochemical studies on receptor density, stimulation of mGluRIs acutely affected NMDA receptor currents but had no long-term effect on NMDA receptor density at the cell surface. In contrast, stimulation of mGluRIs decreased the density of AMPA receptors located at the cell surface. Our results suggest that mGluRIs regulate the glutamate-induced gene expression in neocortical interneurons in a physiologically relevant manner.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Experimental Sey mouse chimeras reveal the developmental deficiencies of Pax6-null granule cells in the postnatal cerebellum. 21126516

    Pax6 has been implicated in cerebellar granule cell development, however the neonatal lethality of the Sey/Sey mutant has precluded a more detailed study of this late developing neuronal type. In this study we use experimental mouse chimeras made from wildtype and Pax6-null embryos to circumvent early lethality and assess the developmental potential of mutant cells in the construction of the cerebellum. We have identified the granule cell as a direct target of mutant gene action, with glia and Purkinje cells being affected in what is largely a non-cell autonomous manner. Most dramatically, in postnatal day 21 (P21) chimeras, mutant cells are largely absent in the anterior and posterior cerebellum while present in central lobules, but amidst disorganized cerebellar architecture. Analysis of P0/1 and P10 chimeras demonstrates a profound temporally based defect where mutant cells colonize the anterior and posterior EGL but fail to migrate to the IGL. Mutant granule cells in the central lobules can reach the IGL in an abnormal manner, with large streams of cells forming raphes through the molecular layer. These studies provide new insights into the role of Pax6 in postnatal cerebellar development that pinpoint the granule cell as an intrinsic target of the mutant gene and key events in the life of the developing granule cell that depend upon normal Pax6 expression.Copyright © 2010 Elsevier Inc. All rights reserved.
    Document Type:
    Reference
    Product Catalog Number:
    AB1778
  • «
  • <
  • 1
  • >
  • »