Millipore Sigma Vibrant Logo
 

rabbit+anti-phospho-histone+h3+ser10+antibody


8 Results Advanced Search  
Showing
Documents (2)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Oncogenic KRAS sensitises colorectal tumour cells to chemotherapy by p53-dependent induction of Noxa. 20354524

    Oxaliplatin and 5-fluorouracil (5-FU) currently form the backbone of conservative treatment in patients with metastatic colorectal cancer. Tumour responses to these agents are highly variable, but the underlying mechanisms are poorly understood. Our previous results have indicated that oncogenic KRAS in colorectal tumour cells sensitises these cells to chemotherapy.FACS analysis was used to determine cell-cycle distribution and the percentage of apoptotic and mitotic cells. A multiplexed RT-PCR assay was used to identify KRAS-controlled apoptosis regulators after exposure to 5-FU or oxaliplatin. Lentiviral expression of short-hairpin RNAs was used to suppress p53 or Noxa.Oncogenic KRAS sensitised colorectal tumour cells to oxaliplatin and 5-FU in a p53-dependent manner and promoted p53 phosphorylation at Ser37 and Ser392, without affecting p53 stabilisation, p21 induction, or cell-cycle arrest. Chemotherapy-induced expression of the p53 target gene Noxa was selectively enhanced by oncogenic KRAS. Suppression of Noxa did not affect p21 induction or cell-cycle arrest, but reduced KRAS/p53-dependent apoptosis after exposure to chemotherapy in vitro and in tumour xenografts. Noxa suppression did not affect tumour growth per se, but strongly reduced the response of these tumours to chemotherapy.Oncogenic KRAS determines the cellular response to p53 activation by oxaliplatin or 5-FU, by facilitating apoptosis induction through Noxa.
    Document Type:
    Reference
    Product Catalog Number:
    06-570
    Product Catalog Name:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Histone H3 phosphorylation (Ser10, Ser28) and phosphoacetylation (K9S10) are differentially associated with gene expression in liver of rats treated in vivo with acute et ... 22025646

    The epigenetic histone modification by ethanol is emerging as one of the mechanisms for its deleterious effects in the liver. In this context, we have investigated the role of histone H3 phosphorylation at Ser10 (P-H3-Ser10), and Ser28 (P-H3-Ser28) in liver after acute ethanol treatment in vivo. Ethanol was administered intraperitoneally in male Sprague-Dawley rats. Ethanol dose-response (1-5 g/kg body weight) and time-course (1-4 h) experiments were conducted, and various parameters were monitored. Steatosis and necrosis (serum alanine aminotransferase) of the liver increased in 4 h, suggesting liver injury. There were differences between P-H3-Ser10 and P-H3-Ser28 at 1 h, with the latter being more sensitive to lower ethanol doses. It was noteworthy that phosphorylation of both serines disappeared at the highest dose used (5 g/kg). We also examined phosphoacetylation of histone H3 at K9S10 and observed a dramatic increase. The changes in histone H3 phosphorylation and phosphoacetylation were also accompanied with expression of early response genes (c-fos, c-jun, mitogen-activated protein kinase phosphatase-1). Chromatin immunoprecipitation assays in samples from 1.5 and 4 h of ethanol administration indicated that increased histone H3 phosphorylation at Ser28 was associated with the promoters of c-jun and plasminogen activator inhibitor-1. In conclusion, this study demonstrates for the first time that in vivo exposure of liver to acute ethanol induced phosphorylation and phosphoacetylation of histone H3, and these modifications are differentially involved in the mRNA expression of genes.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • «
  • <
  • 1
  • >
  • »