Millipore Sigma Vibrant Logo
 

trace


835 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (273)
  • (70)
  • (6)
  • (5)
  • (3)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • Trace Analysis of Perchlorate: Analytical Method and Removal Efficiency of Purification Technologies Trace Analysis of Perchlorate: Analytical Method and Removal Efficiency of Purification Technologies

    Perchlorate recently has received attention as an environmental pollutant. Perchlorate may affect human health by interfering with iodide uptake by the thyroid gland and disrupting thyroid function. Perchlorate-free purified water is needed by laboratories analyzing samples for the presence of perchlorates. An ion chromatography method was developed to analyze perchlorate at the ng/L level in high purity water. The perchlorate-removal efficiency of various combinations of water purification technologies also was evaluated. Reverse osmosis alone removed 97 % of the perchlorate. Ion exchange resins and electrodeionization removed all the perchlorate present in water. Using a combination of purification technologies can provide perchlorate-free water suitable for ion chromatography analysis of perchlorate-contaminated samples.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Rhesus monkey trace amine-associated receptor 1 signaling: enhancement by monoamine transporters and attenuation by the D2 autoreceptor in vitro. 17234900

    Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that directly responds to endogenous monoamines as well as amphetamine-related psychostimulants, including methamphetamine. In the present study, we demonstrate TAAR1 mRNA and protein expression in rhesus monkey brain regions associated with monoaminergic systems, variable cellular distribution of TAAR1 in rhesus monkey brain, and TAAR1 coexpression with the dopamine transporter (DAT) in a subset of dopamine neurons in both rhesus monkey and mouse substantia nigra. On this basis, we evaluated rhesus monkey TAAR1 activation by different compounds and its functional relation with monoamine transporters and the dopamine D2 receptor (D2) short isoform (D2s) autoreceptor in vitro using a cAMP response element-luciferase assay. TAAR1 activation by monoamines and amphetamine-related compounds was greatly enhanced by coexpression of dopamine, norepinephrine, or serotonin transporters, and the activation enhancement was blocked by monoamine transporter inhibitors. This enhancement did not occur in control experiments in which the dopamine D1 receptor (D1) was substituted for TAAR1. Furthermore, activation of TAAR1 by dopamine was completely inhibited by D2s when coexpressed with TAAR1, and this inhibition was blocked by the D2 antagonist raclopride. Last, dopamine activation of TAAR1 could induce c-FOS-luciferase expression but only in the presence of DAT, whereas dopamine activation of D1 resulted in equivalent c-FOS expression in the presence or absence of DAT. Together, these data reveal a broad agonist spectrum for TAAR1, a functional relation of TAAR1 with monoamine transporters and D2s, and a mechanism by which D2 receptor drugs can influence brain monoaminergic function and have efficacy through affecting TAAR1 signaling.
    Document Type:
    Reference
    Product Catalog Number:
    MAB369
    Product Catalog Name:
    Anti-Dopamine Transporter Antibody, NT, clone DAT-Nt
  • Simultaneous determination of trace levels of ethylmercury and methylmercury in biological samples and vaccines using sodium tetra(n-propyl)borate as derivatizing agent 17340078

    Because of increasing awareness of the potential neurotoxicity of even low levels of organomercury compounds, analytical techniques are required for determination of low concentrations of ethylmercury (EtHg) and methylmercury (MeHg) in biological samples. An accurate and sensitive method has been developed for simultaneous determination of methylmercury and ethylmercury in vaccines and biological samples. MeHg and EtHg were isolated by acid leaching (H2SO4–KBr–CuSO4), extraction of MeHg and EtHg bromides into an organic solvent (CH2Cl2), then back-extraction into Milli-Q water. MeHg and EtHg bromides were derivatized with sodium tetrapropylborate (NaBPr4), collected at room temperature on Tenax, separated by isothermal gas chromatography (GC), pyrolysed, and detected by cold-vapour atomic fluorescence spectrometry (CV AFS). The repeatability of results from the method was approximately 5–10% for EtHg and 5–15% for MeHg. Detection limits achieved were 0.01 ng g-1 for EtHg and MeHg in blood, saliva, and vaccines and 5 ng g-1 for EtHg and MeHg in hair. The method presented has been shown to be suitable for determination of background levels of these contaminants in biological samples and can be used in studies related to the health effects of mercury and its species in man. This work illustrates the possibility of using hair and blood as potential biomarkers of exposure to thiomersal.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
  • Genetic deletion of trace amine 1 receptors reveals their role in auto-inhibiting the actions of ecstasy (MDMA). 22114263

    "Ecstasy" [3,4-methylenedioxymetamphetamine (MDMA)] is of considerable interest in light of its prosocial properties and risks associated with widespread recreational use. Recently, it was found to bind trace amine-1 receptors (TA(1)Rs), which modulate dopaminergic transmission. Accordingly, using mice genetically deprived of TA(1)R (TA(1)-KO), we explored their significance to the actions of MDMA, which robustly activated human adenylyl cyclase-coupled TA(1)R transfected into HeLa cells. In wild-type (WT) mice, MDMA elicited a time-, dose-, and ambient temperature-dependent hypothermia and hyperthermia, whereas TA(1)-KO mice displayed hyperthermia only. MDMA-induced increases in dialysate levels of dopamine (DA) in dorsal striatum were amplified in TA(1)-KO mice, despite identical levels of MDMA itself. A similar facilitation of the influence of MDMA upon dopaminergic transmission was acquired in frontal cortex and nucleus accumbens, and induction of locomotion by MDMA was haloperidol-reversibly potentiated in TA(1)-KO versus WT mice. Conversely, genetic deletion of TA(1)R did not affect increases in DA levels evoked by para-chloroamphetamine (PCA), which was inactive at hTA(1) sites. The TA(1)R agonist o-phenyl-3-iodotyramine (o-PIT) blunted the DA-releasing actions of PCA both in vivo (dialysis) and in vitro (synaptosomes) in WT but not TA(1)-KO animals. MDMA-elicited increases in dialysis levels of serotonin (5-HT) were likewise greater in TA(1)-KO versus WT mice, and 5-HT-releasing actions of PCA were blunted in vivo and in vitro by o-PIT in WT mice only. In conclusion, TA(1)Rs exert an inhibitory influence on both dopaminergic and serotonergic transmission, and MDMA auto-inhibits its neurochemical and functional actions by recruitment of TA(1)R. These observations have important implications for the effects of MDMA in humans.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple