Millipore Sigma Vibrant Logo
 

cyclic+nucleotide-gated+cation+channels


6 Results Advanced Search  
Showing
Products (0)
Documents (5)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Quantitative analysis and subcellular distribution of mRNA and protein expression of the hyperpolarization-activated cyclic nucleotide-gated channels throughout developme ... 16648453

    The properties of the hyperpolarization-activated current (I(h)) and its roles in hippocampal network function evolve radically during development. Because I(h) is conducted by the hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels, we tested the hypothesis that understanding the quantitative developmental profiles of HCN1, HCN2, and HCN4 expression, and the isoform- and age-specific progression of their subcellular distribution, should shed light on the established modifications of the properties of I(h) throughout development. Combined quantitative in situ hybridization, regional western blots, and high-resolution, dual-label immunocytochemistry revealed striking and novel information about the expression and distribution of the HCN channel isoforms in the developing hippocampal formation. In cornus ammon 1 (CA) pyramidal cell layer, a robust increase of HCN1 mRNA and protein expression occurred with age, with reciprocal reduction of HCN4 and relatively stable HCN2 levels. These distinct expression patterns raised the contribution of HCN1 to the total HCN channel pool from 33% to 65% consonant with acceleration and reduced cyclic adenosine mono phosphate (cAMP) sensitivity of I(h) in this region with age. In CA3, strong expression of HCN1 already neonatally supports the recently established role of this conductance in neonatal, age-specific, hippocampal oscillations (giant depolarizing potentials). Notably, HCN1 channels were present and probably transported to dendritic compartments already on postnatal day (P) 2, whereas HCN2 channel protein was not evident in dendrites for the first 2 weeks of life. HCN2 mRNA and protein expression remained fairly constant subsequent to the first week of life in all hippocampal subfields examined, whereas HCN4 mRNA and protein expression declined after maximal neonatal expression, so that the contribution of this isoform to the total HCN channel pool dropped from 43% (CA1) and 34% (CA3) on P11 to 8% (CA1) and 19% (CA3) on P90. Interneuronal expression of all HCN channel isoforms in stratum pyramidale was robust in parvalbumin-but not in cholecystokinin-expressing populations and with a subunit-specific subcellular distribution. Taken together, these data suggest that early in life, HCN4 may contribute significantly to the functions of I(h) in specific hippocampal regions. In addition, these evolving, differential quantitative, and subcellular expression patterns of the HCN channel isoforms support age-specific properties and functions of I(h) within the developing hippocampal formation.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Hyperpolarization-activated cation channels are expressed in rat hypothalamic gonadotropin-releasing hormone (GnRH) neurons and immortalized GnRH neurons. 16879992

    OBJECTIVES: The current research was conducted to determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN1-4) channels are expressed in gonadotropin-releasing hormone (GnRH) neurons in the female rat hypothalamus and immortalized GnRH neurons (GT1-7 cells). METHODS: Double-label fluorescence immunohistochemistry was used to colocalize HCN1-4 channels and GnRH in GnRH neurons in the female rat hypothalamus. Reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemistry were used to analyze HCN channel gene expression in GT1-7 cells. RESULTS: Double-label fluorescence immunohistochemistry showed that 43% of hypothalamic GnRH neurons immunostained for HCN2 and 90% of GnRH neurons immunostained for HCN3. RT-PCR and Western blot showed expression of all four HCN channel subunits in GT1-7 cells. Double-label immunocytochemistry showed cytoplasmic immunostaining of HCN2 and HCN3 in GT1-7 cells. CONCLUSIONS: This study demonstrates for the first time that HCN channels are expressed in GnRH neurons in the rat hypothalamus and GT1-7 cells. Our research supports the hypothesis that HCN channels may be involved in electrical bursting activity and pulsatile GnRH secretion in endogenous GnRH neurons and GT1-7 cells.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5456
  • Ca(2+)-activated Cl(-) currents are dispensable for olfaction. 21516098

    Canonical olfactory signal transduction involves the activation of cyclic AMP-activated cation channels that depolarize the cilia of receptor neurons and raise intracellular calcium. Calcium then activates Cl(-) currents that may be up to tenfold larger than cation currents and are believed to powerfully amplify the response. We identified Anoctamin2 (Ano2, also known as TMEM16B) as the ciliary Ca(2+)-activated Cl(-) channel of olfactory receptor neurons. Ano2 is expressed in the main olfactory epithelium (MOE) and in the vomeronasal organ (VNO), which also expresses the related Ano1 channel. Disruption of Ano2 in mice virtually abolished Ca(2+)-activated Cl(-) currents in the MOE and VNO. Ano2 disruption reduced fluid-phase electro-olfactogram responses by only ∼40%, did not change air-phase electro-olfactograms and did not reduce performance in olfactory behavioral tasks. In contrast with the current view, cyclic nucleotide-gated cation channels do not need a boost by Cl(-) channels to achieve near-physiological levels of olfaction.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5280
    Product Catalog Name:
    Anti-Tyrosine Hydroxylase Antibody, clone 2/40/15
  • Alveolar epithelial CNGA1 channels mediate cGMP-stimulated, amiloride-insensitive, lung liquid absorption. 21559843

    Impairment of lung liquid absorption can lead to severe respiratory symptoms, such as those observed in pulmonary oedema. In the adult lung, liquid absorption is driven by cation transport through two pathways: a well-established amiloride-sensitive Na(+) channel (ENaC) and, more controversially, an amiloride-insensitive channel that may belong to the cyclic nucleotide-gated (CNG) channel family. Here, we show robust CNGA1 (but not CNGA2 or CNGA3) channel expression principally in rat alveolar type I cells; CNGA3 was expressed in ciliated airway epithelial cells. Using a rat in situ lung liquid clearance assay, CNG channel activation with 1 mM 8Br-cGMP resulted in an approximate 1.8-fold stimulation of lung liquid absorption. There was no stimulation by 8Br-cGMP when applied in the presence of either 100 μM L: -cis-diltiazem or 100 nM pseudechetoxin (PsTx), a specific inhibitor of CNGA1 channels. Channel specificity of PsTx and amiloride was confirmed by patch clamp experiments showing that CNGA1 channels in HEK 293 cells were not inhibited by 100 μM amiloride and that recombinant αβγ-ENaC were not inhibited by 100 nM PsTx. Importantly, 8Br-cGMP stimulated lung liquid absorption in situ, even in the presence of 50 μM amiloride. Furthermore, neither L: -cis-diltiazem nor PsTx affected the β(2)-adrenoceptor agonist-stimulated lung liquid absorption, but, as expected, amiloride completely ablated it. Thus, transport through alveolar CNGA1 channels, located in type I cells, underlies the amiloride-insensitive component of lung liquid reabsorption. Furthermore, our in situ data highlight the potential of CNGA1 as a novel therapeutic target for the treatment of diseases characterised by lung liquid overload.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3132
  • Dopamine D4 receptor excitation of lateral habenula neurons via multiple cellular mechanisms. 24155292

    Glutamatergic lateral habenula (LHb) output communicates negative motivational valence to ventral tegmental area (VTA) dopamine (DA) neurons via activation of the rostromedial tegmental nucleus (RMTg). However, the LHb also receives a poorly understood DA input from the VTA, which we hypothesized constitutes an important feedback loop regulating DA responses to stimuli. Using whole-cell electrophysiology in rat brain slices, we find that DA initiates a depolarizing inward current (I(DAi)) and increases spontaneous firing in 32% of LHb neurons. I(DAi) was also observed upon application of amphetamine or the DA uptake blockers cocaine or GBR12935, indicating involvement of endogenous DA. I(DAi) was blocked by D4 receptor (D4R) antagonists (L745,870 or L741,742), and mimicked by a selective D4R agonist (A412997). I(DAi) was associated with increased whole-cell conductance and was blocked by Cs+ or a selective blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel, ZD7288. I(DAi) was also associated with a depolarizing shift in half-activation voltage for the hyperpolarization-activated cation current (Ih) mediated by HCN channels. Recordings from LHb neurons containing fluorescent retrograde tracers revealed that I(DAi) was observed only in cells projecting to the RMTg and not the VTA. In parallel with direct depolarization, DA also strongly increased synaptic glutamate release and reduced synaptic GABA release onto LHb cells. These results demonstrate that DA can excite glutamatergic LHb output to RMTg via multiple cellular mechanisms. Since the RMTg strongly inhibits midbrain DA neurons, activation of LHb output to RMTg by DA represents a negative feedback loop that may dampen DA neuron output following activation.
    Document Type:
    Reference
    Product Catalog Number:
    MAB318
    Product Catalog Name:
    Anti-Tyrosine Hydroxylase Antibody, clone LNC1
  • «
  • <
  • 1
  • >
  • »