Millipore Sigma Vibrant Logo
 

05636mm


198 Results Advanced Search  
Showing
Products (0)
Documents (198)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (165)
  • (23)
  • (9)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Stage-Specific Modulation of Cortical Neuronal Development by Mmu-miR-134. 21228099

    To realize the potential of microRNAs (miRs) as fine-tuning regulators of embryonic neuronal differentiation, it is critical to define their developmental function. Mmu-miR-134 (miR-134) is a powerful inducer of pluripotent stem cell differentiation. However, its functional role during embryonic, neuronal development is unknown. We demonstrate that mature, miR-134 transcript levels elevate during embryonic, neuronal differentiation in vitro and in vivo. To define the developmental targets and function of miR-134, we identified multiple brain-expressed targets including the neural progenitor cell-enriched, bone morphogenetic protein (BMP) antagonist Chordin-like 1 (Chrdl-1) and the postmitotic, neuron-specific, microtubule-associated protein, Doublecortin (Dcx). We show that, through interaction with Dcx and/or Chrdl-1, miR-134 has stage-specific effects on cortical progenitors, migratory neurons, and differentiated neurons. In neural progenitors, miR-134 promotes cell proliferation and counteracts Chrdl-1-induced apoptosis and Dcx-induced differentiation in vitro. In neurons, miR-134 reduces cell migration in vitro and in vivo in a Dcx-dependent manner. In differentiating neurons, miR-134 modulates process outgrowth in response to exogenous BMP-4 in a noggin-reversible manner. Taken together, we present Dcx and Chrdl-1 as new regulatory targets of miR-134 during embryonic, mouse, cortical, and neuronal differentiation and show a novel and previously undiscovered role for miR-134 in the stage-specific modulation of cortical development.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The ATM kinase signaling induced by the low-energy β-particles emitted by (33)P is essential for the suppression of chromosome aberrations and is greater than that induce ... 21315088

    Ataxia-telangiectasia mutated (ATM) encodes a nuclear serine/threonine protein kinase whose activity is increased in cells exposed to low doses of ionizing radiation (IR). Here we examine ATM kinase activation in cells exposed to either (32)P- or (33)P-orthophosphate under conditions typically employed in metabolic labelling experiments. We calculate that the absorbed dose of IR delivered to a 5cm×5cm monolayer of cells incubated in 2ml media containing 1mCi of the high-energy (1.70MeV) β-particle emitter (32)P-orthophosphate for 30min is ∼1Gy IR. The absorbed dose of IR following an otherwise identical exposure to the low-energy (0.24MeV) β-particle emitter (33)P-orthophosphate is ∼0.18Gy IR. We show that low-energy β-particles emitted by (33)P induce a greater number of ionizing radiation-induced foci (IRIF) and greater ATM kinase signaling than energetic β-particles emitted by (32)P. Hence, we demonstrate that it is inappropriate to use (33)P-orthophosphate as a negative control for (32)P-orthophosphate in experiments investigating DNA damage responses to DNA double-strand breaks (DSBs). Significantly, we show that ATM accumulates in the chromatin fraction when ATM kinase activity is inhibited during exposure to either radionuclide. Finally, we also show that chromosome aberrations accumulate in cells when ATM kinase activity is inhibited during exposure to ∼0.36Gy β-particles emitted by (33)P. We therefore propose that direct cellular exposure to (33)P-orthophosphate is an excellent means to induce and label the IR-induced, ATM kinase-dependent phosphoproteome.Copyright © 2011 Elsevier B.V. All rights reserved.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Homologous recombination repair is essential for repair of vosaroxin-induced DNA double-strand breaks. 21317456

    Vosaroxin (formerly voreloxin) is a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, inducing site-selective double-strand breaks (DSB), G2 arrest and apoptosis. Objective responses and complete remissions were observed in phase 2 studies of vosaroxin in patients with solid and hematologic malignancies, and responses were seen in patients whose cancers were resistant to anthracyclines. The quinolone-based scaffold differentiates vosaroxin from the anthracyclines and anthracenediones, broadly used DNA intercalating topoisomerase II poisons. Here we report that vosaroxin induces a cell cycle specific pattern of DNA damage and repair that is distinct from the anthracycline, doxorubicin. Both drugs stall replication and preferentially induce DNA damage in replicating cells, with damage in G2 / M greater than S greater than G1. However, detectable replication fork collapse, as evidenced by DNA fragmentation and long tract recombination during S phase, is induced only by doxorubicin. Furthermore, vosaroxin induces less overall DNA fragmentation. Homologous recombination repair (HRR) is critical for recovery from DNA damage induced by both agents, identifying the potential to clinically exploit synthetic lethality.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. 20660618

    TDP-43 is a multifunctional DNA/RNA-binding factor that has been implicated in the regulation of neuronal plasticity. TDP-43 has also been identified as the major constituent of the neuronal cytoplasmic inclusions (NCIs) that are characteristic of a range of neurodegenerative diseases, including the frontotemporal lobar degeneration with ubiquitin(+) inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). We have generated a FTLD-U mouse model (CaMKII-TDP-43 Tg) in which TDP-43 is transgenically overexpressed in the forebrain resulting in phenotypic characteristics mimicking those of FTLD-U. In particular, the transgenic (Tg) mice exhibit impaired learning/memory, progressive motor dysfunction, and hippocampal atrophy. The cognitive and motor impairments are accompanied by reduced levels of the neuronal regulators phospho-extracellular signal-regulated kinase and phosphorylated cAMP response element-binding protein and increased levels of gliosis in the brains of the Tg mice. Moreover, cells with TDP-43(+), ubiquitin(+) NCIs and TDP-43-deleted nuclei appear in the Tg mouse brains in an age-dependent manner. Our data provide direct evidence that increased levels of TDP-43 protein in the forebrain is sufficient to lead to the formation of TDP-43(+), ubiquitin(+) NCIs and neurodegeneration. This FTLD-U mouse model should be valuable for the mechanistic analysis of the role of TDP-43 in the pathogenesis of FTLD-U and for the design of effective therapeutic approaches of the disease.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Wolf-Hirschhorn syndrome candidate 1 is involved in the cellular response to DNA damage. 21788515

    Wolf-Hirschhorn syndrome (WHS) is a malformation syndrome associated with growth retardation, mental retardation, and immunodeficiency resulting from a hemizygous deletion of the short arm of chromosome 4, called the WHS critical region (WHSC). The WHSC1 gene is located in this region, and its loss is believed to be responsible for a number of WHS characteristics. We identified WHSC1 in a genetic screen for genes involved in responding to replication stress, linking Wolf-Hirschhorn syndrome to the DNA damage response (DDR). Here, we report that the WHSC1 protein is a member of the DDR pathway. WHSC1 localizes to sites of DNA damage and replication stress and is required for resistance to many DNA-damaging and replication stress-inducing agents. Through its SET domain, WHSC1 regulates the methylation status of the histone H4 K20 residue and is required for the recruitment of 53BP1 to sites of DNA damage. We propose that Wolf-Hirschhorn syndrome results from a defect in the DDR.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Widespread phosphorylation of histone H2AX by species C adenovirus infection requires viral DNA replication. 19321613

    Adenovirus infection activates cellular DNA damage response and repair pathways. Viral proteins that are synthesized before viral DNA replication prevent recognition of viral genomes as a substrate for DNA repair by targeting members of the sensor complex composed of Mre11/Rad50/NBS1 for degradation and relocalization, as well as targeting the effector protein DNA ligase IV. Despite inactivation of these cellular sensor and effector proteins, infection results in high levels of histone 2AX phosphorylation, or gammaH2AX. Although phosphorylated H2AX is a characteristic marker of double-stranded DNA breaks, this modification was widely distributed throughout the nucleus of infected cells and was coincident with the bulk of cellular DNA. H2AX phosphorylation occurred after the onset of viral DNA replication and after the degradation of Mre11. Experiments with inhibitors of the serine-threonine kinases ataxia telangiectasia mutated (ATM), AT- and Rad3-related (ATR), and DNA protein kinase (DNA-PK), the kinases responsible for H2AX phosphorylation, indicate that H2AX may be phosphorylated by ATR during a wild-type adenovirus infection, with some contribution from ATM and DNA-PK. Viral DNA replication appears to be the stimulus for this phosphorylation event, since infection with a nonreplicating virus did not elicit phosphorylation of H2AX. Infected cells also responded to high levels of input viral DNA by localized phosphorylation of H2AX. These results are consistent with a model in which adenovirus-infected cells sense and respond to both incoming viral DNA and viral DNA replication.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Blockade of the NFκB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. 21423202

    Glioblastoma multiforme is one of the most devastating cancers and presents unique challenges to therapy because of its aggressive behavior. Cancer-initiating or progenitor cells have been described to be the only cell population with tumorigenic capacity in glioblastoma. Therefore, effective therapeutic strategies targeting these cells or the early precursors may be beneficial. We have established different cultures of glioblastoma-initiating cells (GICs) derived from surgical specimens and found that, after induction of differentiation, the NFκB transcriptional pathway was activated, as determined by analyzing key proteins such as p65 and IκB and the upregulation of a number of target genes. We also showed that blockade of nuclear factor (NF)κB signaling in differentiating GICs by different genetic strategies or treatment with small-molecule inhibitors, promoted replication arrest and senescence. This effect was partly mediated by reduced levels of the NFκB target gene cyclin D1, because its downregulation by RNA interference reproduced a similar phenotype. Furthermore, these results were confirmed in a xenograft model. Intravenous treatment of immunodeficient mice bearing human GIC-derived tumors with a novel small-molecule inhibitor of the NFκB pathway induced senescence of tumor cells but no ultrastructural alterations of the brain parenchyma were detected. These findings reveal that activation of NFκB may keep differentiating GICs from acquiring a mature postmitotic phenotype, thus allowing cell proliferation, and support the rationale for therapeutic strategies aimed to promote premature senescence of differentiating GICs by blocking key factors within the NFκB pathway.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Ataxia telangiectasia mutated- and Rad3-related kinase drives both the early and the late DNA-damage response to the monofunctional antitumour alkylator S23906. 21470188

    Numerous anticancer agents and environmental mutagens target DNA. Although all such compounds interfere with the progression of the replication fork and inhibit DNA synthesis, there are marked differences in the DNA-damage response pathways they trigger, and the relative impact of the proximal or the distal signal transducers on cell survival is mainly lesion-specific. Accordingly, checkpoint kinase inhibitors in current clinical development show synergistic activity with some DNA-targeting agents, but not with others. In the present study, we characterize the DNA-damage response to the antitumour acronycine derivative S23906, which forms monofunctional adducts with guanine residues in the minor groove of DNA. S23906 exposure is accompanied by specific recruitment of RPA (replication protein A) at replication sites and rapid Chk1 activation. In contrast, neither MRN (Mre11-Rad50-Nbs1) nor ATM (ataxia-telangiectasia mutated), contributes to the initial response to S23906. Interestingly, genetic attenuation of ATR (ATM- and Ras3-related) activity inhibits not only the early phosphorylation of histone H2AX and Chk1, but also interferes with the late phosphorylation of Chk2. Moreover, loss of ATR function or pharmacological inhibition of the checkpoint kinases by AZD7762 is accompanied by abrogation of the S-phase arrest and increased sensitivity towards S23906. These findings identify ATR as a central co-ordinator of the DNA-damage response to S23906, and provide a mechanistic rationale for combinations of S23906 and similar agents with checkpoint abrogators.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. 21841825

    Activated Ras oncogene induces DNA-damage response by triggering reactive oxygen species (ROS) production and this is critical for oncogene-induced senescence. Until now, little connections between oncogene expression, ROS-generating NADPH oxidases and DNA-damage response have emerged from different studies. Here we report that H-RasV12 positively regulates the NADPH oxidase system NOX4-p22(phox) that produces H(2)O(2). Knocking down the NADPH oxidase with small interference RNA decreases H-RasV12-induced DNA-damage response detected by γ-H2A.X foci analysis. Using HyPer, a specific probe for H(2)O(2), we detected an increase in H(2)O(2) in the nucleus correlated with NOX4-p22(phox) perinuclear localization. DNA damage response can be caused not only by H-RasV12-driven accumulation of ROS but also by a replicative stress due to a sustained oncogenic signal. Interestingly, NOX4 downregulation by siRNA abrogated H-RasV12 regulation of CDC6 expression, an essential regulator of DNA replication. Moreover, senescence markers, such as senescence-associated heterochromatin foci, PML bodies, HP1β foci and p21 expression, induced under H-RasV12 activation were decreased with NOX4 inactivation. Taken together, our data indicate that NADPH oxidase NOX4 is a critical mediator in oncogenic H-RasV12-induced DNA-damage response and subsequent senescence.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Androgen depletion induces senescence in prostate cancer cells through down-regulation of Skp2. 21677876

    Although the induction of senescence in cancer cells is a potent mechanism of tumor suppression, senescent cells remain metabolically active and may secrete a broad spectrum of factors that promote tumorigenicity in neighboring malignant cells. Here we show that androgen deprivation therapy (ADT), a widely used treatment for advanced prostate cancer, induces a senescence-associated secretory phenotype in prostate cancer epithelial cells, indicated by increases in senescence-associated β-galactosidase activity, heterochromatin protein 1β foci, and expression of cathepsin B and insulin-like growth factor binding protein 3. Interestingly, ADT also induced high levels of vimentin expression in prostate cancer cell lines in vitro and in human prostate tumors in vivo. The induction of the senescence-associated secretory phenotype by androgen depletion was mediated, at least in part, by down-regulation of S-phase kinase-associated protein 2, whereas the neuroendocrine differentiation of prostate cancer cells was under separate control. These data demonstrate a previously unrecognized link between inhibition of androgen receptor signaling, down-regulation of S-phase kinase-associated protein 2, and the appearance of secretory, tumor-promoting senescent cells in prostate tumors. We propose that ADT may contribute to the development of androgen-independent prostate cancer through modulation of the tissue microenvironment by senescent cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple