Millipore Sigma Vibrant Logo
 

07449mm


67 Results Advanced Search  
Showing
Products (0)
Documents (67)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (38)
  • (20)
  • (9)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Characterization of novel paternal ncRNAs at the Plagl1 locus, including Hymai, predicted to interact with regulators of active chromatin. 22723905

    Genomic imprinting is a complex epigenetic mechanism of transcriptional control that utilizes DNA methylation and histone modifications to bring about parent-of-origin specific monoallelic expression in mammals. Genes subject to imprinting are often organised in clusters associated with large non-coding RNAs (ncRNAs), some of which have cis-regulatory functions. Here we have undertaken a detailed allelic expression analysis of an imprinted domain on mouse proximal chromosome 10 comprising the paternally expressed Plagl1 gene. We identified three novel Plagl1 transcripts, only one of which contains protein-coding exons. In addition, we characterised two unspliced ncRNAs, Hymai, the mouse orthologue of HYMAI, and Plagl1it (Plagl1 intronic transcript), a transcript located in intron 5 of Plagl1. Imprinted expression of these novel ncRNAs requires DNMT3L-mediated maternal DNA methylation, which is also indispensable for establishing the correct chromatin profile at the Plagl1 DMR. Significantly, the two ncRNAs are retained in the nucleus, consistent with a potential regulatory function at the imprinted domain. Analysis with catRAPID, a protein-ncRNA association prediction algorithm, suggests that Hymai and Plagl1it RNAs both have potentially high affinity for Trithorax chromatin regulators. The two ncRNAs could therefore help to protect the paternal allele from DNA methylation by attracting Trithorax proteins that mediate H3 lysine-4 methylation.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Hypermethylated in cancer 1 (HIC1), a tumor suppressor gene epigenetically deregulated in hyperparathyroid tumors by histone H3 lysine modification. 22544915

    Primary hyperparathyroidism (pHPT) resulting from parathyroid tumors is a common endocrine disorder with incompletely understood etiology. In renal failure, secondary hyperparathyroidism (sHPT) occurs with multiple tumor development as a result of calcium and vitamin D regulatory disturbance.The aim of the study was to investigate whether HIC1 may act as a tumor suppressor in the parathyroid glands and whether deregulated expression involves epigenetic mechanisms.Parathyroid tumors from patients with pHPT included single adenomas, multiple tumors from the same patient, and cancer. Hyperplastic parathyroid glands from patients with sHPT and hypercalcemia and normal parathyroid tissue specimens were included in the study. Quantitative RT-PCR, bisulfite pyrosequencing, colony formation assay, chromatin immunoprecipitation, and RNA interference was used.HIC1 was generally underexpressed regardless of the hyperparathyroid disease state including multiple parathyroid tumors from the same patient, and overexpression of HIC1 led to a decrease in clonogenic survival of parathyroid tumor cells. Only the carcinomas showed a high methylation level and reduced HIC1 expression. Cell culture experiments, including use of primary parathyroid tumor cells prepared directly after operation, the general histone methyltransferase inhibitor 3-deazaneplanocin A, chromatin immunoprecipitation, and RNA interference of DNA methyltransferases and EZH2 (enhancer of zeste homolog 2), supported a role of repressive histone H3 modifications (H3K27me2/3) rather than DNA methylation in repression of HIC1.The results strongly support a growth-regulatory role of HIC1 in the parathyroid glands and suggest that perturbed expression of HIC1 may represent an early event during tumor development. Repressive histone modification H3K27me2/3 is involved in repression of HIC1 expression in hyperparathyroid tumors.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Caenorhabditis elegans dosage compensation regulates histone H4 chromatin state on X chromosomes. 22393255

    Dosage compensation equalizes X-linked gene expression between the sexes. This process is achieved in Caenorhabditis elegans by hermaphrodite-specific, dosage compensation complex (DCC)-mediated, 2-fold X chromosome downregulation. How the DCC downregulates gene expression is not known. By analyzing the distribution of histone modifications in nuclei using quantitative fluorescence microscopy, we found that H4K16 acetylation (H4K16ac) is underrepresented and H4K20 monomethylation (H4K20me1) is enriched on hermaphrodite X chromosomes in a DCC-dependent manner. Depletion of H4K16ac also requires the conserved histone deacetylase SIR-2.1, while enrichment of H4K20me1 requires the activities of the histone methyltransferases SET-1 and SET-4. Our data suggest that the mechanism of dosage compensation in C. elegans involves redistribution of chromatin-modifying activities, leading to a depletion of H4K16ac and an enrichment of H4K20me1 on the X chromosomes. These results support conserved roles for histone H4 chromatin modification in worm dosage compensation analogous to those seen in flies, using similar elements and opposing strategies to achieve differential 2-fold changes in X-linked gene expression.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Epigenetic control of cell cycle-dependent histone gene expression is a principal component of the abbreviated pluripotent cell cycle. 22826438

    Self-renewal of human pluripotent embryonic stem cells proceeds via an abbreviated cell cycle with a shortened G(1) phase. We examined which genes are modulated in this abbreviated period and the epigenetic mechanisms that control their expression. Accelerated upregulation of genes encoding histone proteins that support DNA replication is the most prominent gene regulatory program at the G(1)/S-phase transition in pluripotent cells. Expedited expression of histone genes is mediated by a unique chromatin architecture reflected by major nuclease hypersensitive sites, atypical distribution of epigenetic histone marks, and a region devoid of histone octamers. We observed remarkable differences in chromatin structure--hypersensitivity and histone protein modifications--between human embryonic stem (hES) and normal diploid cells. Cell cycle-dependent transcription factor binding permits dynamic three-dimensional interactions between transcript initiating and processing factors at 5' and 3' regions of the gene. Thus, progression through the abbreviated G(1) phase involves cell cycle stage-specific chromatin-remodeling events and rapid assembly of subnuclear microenvironments that activate histone gene transcription to promote nucleosomal packaging of newly replicated DNA during stem cell renewal.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The Bmi-1 polycomb protein antagonizes the (-)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival. 20015867

    The polycomb group (PcG) proteins are epigenetic regulators of gene expression that enhance cell survival. This regulation is achieved via action of two multiprotein PcG complexes--PRC2 (EED) and PRC1 [B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1)]. These complexes modulate gene expression by increasing histone methylation and reducing acetylation--leading to a closed chromatin conformation. Activity of these proteins is associated with increased cell proliferation and survival. We show increased expression of key PcG proteins in immortalized keratinocytes and skin cancer cell lines. We examine the role of two key PcG proteins, Bmi-1 and enhancer of zeste homolog 2 (Ezh2), and the impact of the active agent in green tea, (-)-epigallocatechin-3-gallate (EGCG), on the function of these regulators. EGCG treatment of SCC-13 cells reduces Bmi-1 and Ezh2 level and this is associated with reduced cell survival. The reduction in survival is associated with a global reduction in histone H3 lysine 27 trimethylation, a hallmark of PRC2 complex action. This change in PcG protein expression is associated with reduced expression of key proteins that enhance progression through the cell cycle [cyclin-dependent kinase (cdk)1, cdk2, cdk4, cyclin D1, cyclin E, cyclin A and cyclin B1] and increased expression of proteins that inhibit cell cycle progression (p21 and p27). Apoptosis is also enhanced, as evidenced by increased caspase 9, 8 and 3 cleavage and increased poly(adenosine diphosphate ribose) polymerase cleavage. EGCG treatment also increases Bax and suppresses Bcl-xL expression. Vector-mediated enhanced Bmi-1 expression reverses these EGCG-dependent changes. These findings suggest that green tea polyphenols reduce skin tumor cell survival by influencing PcG-mediated epigenetic regulatory mechanisms.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • A proteasome inhibitor-stimulated Nrf1 protein-dependent compensatory increase in proteasome subunit gene expression reduces polycomb group protein level. 22932898

    The polycomb group (PcG) proteins, Bmi-1 and Ezh2, are important epigenetic regulators that enhance skin cancer cell survival. We recently showed that Bmi-1 and Ezh2 protein level is reduced by treatment with the dietary chemopreventive agents, sulforaphane and green tea polyphenol, and that this reduction involves ubiquitination of Bmi-1 and Ezh2, suggesting a key role of the proteasome. In the present study, we observe a surprising outcome that Bmi-1 and Ezh2 levels are reduced by treatment with the proteasome inhibitor, MG132. We show that this is associated with a compensatory increase in the level of mRNA encoding proteasome protein subunits in response to MG132 treatment and an increase in proteasome activity. The increase in proteasome subunit level is associated with increased Nrf1 and Nrf2 level. Moreover, knockdown of Nrf1 attenuates the MG132-dependent increase in proteasome subunit expression and restores Bmi-1 and Ezh2 expression. The MG132-dependent loss of Bmi-1 and Ezh2 is associated with reduced cell proliferation, accumulation of cells in G(2), and increased apoptosis. These effects are attenuated by forced expression of Bmi-1, suggesting that PcG proteins, consistent with a prosurvival action, may antagonize the action of MG132. These studies describe a compensatory Nrf1-dependent, and to a lesser extent Nrf2-dependent, increase in proteasome subunit level in proteasome inhibitor-treated cells and confirm that PcG protein levels are regulated by proteasome activity.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • A novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/arf locus through polycomb repressive complex 1. 20808772

    Polycomb group (PcG) proteins play a crucial role in cellular senescence as key transcriptional regulators of the Ink4a/Arf tumor suppressor gene locus. However, how PcG complexes target and contribute to stable gene silencing of the Ink4a/Arf locus remains little understood.We examined the function of Zinc finger domain-containing protein 277 (Zfp277), a novel zinc finger protein that interacts with the PcG protein Bmi1. Zfp277 binds to the Ink4a/Arf locus in a Bmi1-independent manner and interacts with polycomb repressor complex (PRC) 1 through direct interaction with Bmi1. Loss of Zfp277 in mouse embryonic fibroblasts (MEFs) caused dissociation of PcG proteins from the Ink4a/Arf locus, resulting in premature senescence associated with derepressed p16(Ink4a) and p19(Arf) expression. Levels of both Zfp277 and PcG proteins inversely correlated with those of reactive oxygen species (ROS) in senescing MEFs, but the treatment of Zfp277(-/-) MEFs with an antioxidant restored the binding of PRC2 but not PRC1 to the Ink4a/Arf locus. Notably, forced expression of Bmi1 in Zfp277(-/-) MEFs did not restore the binding of Bmi1 to the Ink4a/Arf locus and failed to bypass cellular senescence. A Zfp277 mutant that could not bind Bmi1 did not rescue Zfp277(-/-) MEFs from premature senescence.Our findings implicate Zfp277 in the transcriptional regulation of the Ink4a/Arf locus and suggest that the interaction of Zfp277 with Bmi1 is essential for the recruitment of PRC1 to the Ink4a/Arf locus. Our findings also highlight dynamic regulation of both Zfp277 and PcG proteins by the oxidative stress pathways.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Polycomb target genes are silenced in multiple myeloma. 20634887

    Multiple myeloma (MM) is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells. This profile was enriched for previously defined H3K27-tri-methylated genes, targets of the Polycomb group (PcG) proteins in human embryonic fibroblasts. Additionally, the silenced gene signature was more pronounced in ISS stage III MM compared to stage I and II. Using chromatin immunoprecipitation (ChIP) assay on purified CD138+ cells from four MM patients and on two MM cell lines, we found enrichment of H3K27me3 at genes selected from the profile. As the data implied that the Polycomb-targeted gene profile would be highly relevant for pharmacological treatment of MM, we used two compounds to chemically revert the H3K27-tri-methylation mediated gene silencing. The S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin (DZNep) and the histone deacetylase inhibitor LBH589 (Panobinostat), reactivated the expression of genes repressed by H3K27me3, depleted cells from the PRC2 component EZH2 and induced apoptosis in human MM cell lines. In the immunocompetent 5T33MM in vivo model for MM, treatment with LBH589 resulted in gene upregulation, reduced tumor load and increased overall survival. Taken together, our results reveal a common gene signature in MM, mediated by gene silencing via the Polycomb repressor complex. The importance of the underexpressed gene profile in MM tumor initiation and progression should be subjected to further studies.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Differential effects of AdOx on gene expression in P19 embryonal carcinoma cells. 22221422

    Pluripotent cells maintain a unique gene expression pattern and specific chromatin signature. In this study, we explored the effect of the methyltransferase inhibitor adenosine dialdehyde (AdOx) on pluripotency maintenance and gene expression in P19 embryonal carcinoma cells.After AdOx treatment, the pluripotency-related gene network became disordered, and the early developmental genes were released from the repression. Remarkably, AdOx caused contrasting effects on the expression of two key pluripotency genes, nanog and oct3/4, with the reduction of the repressive histone marks H3K27me3, H3K9me3 and H3K9me2 only in the nanog gene.Key pluripotency genes were controlled by different mechanisms, including the differential enrichment of repressive histone methylation marks. These data provided novel clues regarding the critical role of histone methylation in the maintenance of pluripotency and the determination of cell fate in P19 pluripotent cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. 19376930

    Maize (Zea mays) has an exceptionally complex genome with a rich history in both epigenetics and evolution. We report genomic landscapes of representative epigenetic modifications and their relationships to mRNA and small RNA (smRNA) transcriptomes in maize shoots and roots. The epigenetic patterns differed dramatically between genes and transposable elements, and two repressive marks (H3K27me3 and DNA methylation) were usually mutually exclusive. We found an organ-specific distribution of canonical microRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs), indicative of their tissue-specific biogenesis. Furthermore, we observed that a decreasing level of mop1 led to a concomitant decrease of 24-nucleotide siRNAs relative to 21-nucleotide miRNAs in a tissue-specific manner. A group of 22-nucleotide siRNAs may originate from long-hairpin double-stranded RNAs and preferentially target gene-coding regions. Additionally, a class of miRNA-like smRNAs, whose putative precursors can form short hairpins, potentially targets genes in trans. In summary, our data provide a critical analysis of the maize epigenome and its relationships to mRNA and smRNA transcriptomes.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple