Millipore Sigma Vibrant Logo
 

17622mm


6 Results Advanced Search  
Showing
Products (0)
Documents (6)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Ethanol and acetaldehyde exposure induces specific epigenetic modifications in the prodynorphin gene promoter in a human neuroblastoma cell line. 21106935

    Ethanol alters neural activity through interaction with multiple neurotransmitters and neuromodulators. The endogenous opioid system seems to play a key role, since the opioid receptor antagonist naltrexone (ReVia®) attenuates craving for alcohol. We recently reported that ethanol and acetaldehyde, the first product of ethanol metabolism, affect transcription of opioid system genes in human SH-SY5Y neuroblastoma cells. In the current study, potential epigenetic mechanisms were investigated to clarify these effects on prodynorphin gene expression. DNA methylation was analyzed by bisulfite pyrosequencing, and chromatin immunoprecipitation was used to assess putative specific histone modifications at the prodynorphin gene promoter. The results demonstrated a temporal relationship between selective chromatin modifications induced by ethanol and acetaldehyde and changes in prodynorphin gene expression quantitated by real-time qPCR. DNA methylation was not altered in any of the experimental conditions used. The epigenetic changes may precede gene transcription, and histone modifications might keep the prodynorphin gene in a poised state for later reactivation. A link has been observed between gene expression alterations and selective epigenetic modulation in the prodynorphin promoter region, demonstrating a specificity of the changes induced by ethanol and acetaldehyde. The latter may be mediating ethanol effects at the genomic level.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1. 22426358

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (~2-fold) to the myogenin promoter at the transcription start site (-40 to +42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (-40 to +42).
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Epigenetic inactivation of the miR-124-1 in haematological malignancies. 21544199

    miR-124-1 is a tumour suppressor microRNA (miR). Epigenetic deregulation of miRs is implicated in carcinogenesis. Promoter DNA methylation and histone modification of miR-124-1 was studied in 5 normal marrow controls, 4 lymphoma, 8 multiple myeloma (MM) cell lines, 230 diagnostic primary samples of acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), MM, and non-Hodgkin's lymphoma (NHL), and 53 MM samples at stable disease or relapse. Promoter of miR-124-1 was unmethylated in normal controls but homozygously methylated in 4 of 4 lymphoma and 4 of 8 myeloma cell lines. Treatment of 5-Aza-2'-deoxycytidine led to miR-124-1 demethylation and re-expression of mature miR-124, which also associated with emergence of euchromatic trimethyl H3K4 and consequent downregulation of CDK6 in myeloma cells harboring homozygous miR-124-1 methylation. In primary samples at diagnosis, miR-124-1 methylation was absent in CML but detected in 2% each of MM at diagnosis and relapse/progression, 5% ALL, 15% AML, 14% CLL and 58.1% of NHL (pless than 0.001). Amongst lymphoid malignancies, miR-124-1 was preferentially methylated in NHL than MM, CLL or ALL. In primary lymphoma samples, miR-124-1 was preferentially hypermethylated in B- or NK/T-cell lymphomas and associated with reduced miR-124 expression. In conclusion, miR-124-1 was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration. Hypomethylation led to partial restoration of euchromatic histone code and miR re-expression. Infrequent miR-124-1 methylation detected in diagnostic and relapse MM samples showed an unimportant role in MM pathogenesis, despite frequent methylation found in cell lines. Amongst haematological cancers, miR-124-1 was more frequently hypermethylated in NHL, and hence warrants further study.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • H3K27 trimethylation is an early epigenetic event of p16INK4a silencing for regaining tumorigenesis in fusion reprogrammed hepatoma cells. 20382980

    Stable epigenetic silencing of p16(INK4a) is a common event in hepatocellular carcinoma (HCC) cells, which is associated with abnormal cell proliferation and liberation from cell cycle arrest. Understanding the early epigenetic events in silencing p16(INK4a) expression may illuminate a prognostic strategy to block HCC development. Toward this end, we created a reprogram cell model by the fusion mouse HCC cells with mouse embryonic stem cells, in which the ES-Hepa hybrids forfeited HCC cell characteristics along with reactivation of the silenced p16(INK4a). HCC characteristics, in terms of gene expression pattern and tumorigenic potential, was restored upon induced differentiation of these reprogrammed ES-Hepa hybrids. The histone methylation pattern relative to p16(INK4a) silencing during differentiation of the ES-Hepa hybrids was analyzed. H3K27 trimethylation at the p16(INK4a) promoter region, occurring in the early onset of p16(INK4a) silencing, was followed by H3K9 dimethylation at later stages. During the induced differentiation of the ES-Hepa hybrids, H3K4 di- and trimethylations were maintained at high levels during the silencing of p16(INK4a), strongly suggesting that H3K4 methylation events did not cause the silencing of p16(INK4a). Our results suggested that the enrichment of H3K27 trimethylation, independent of H3K9 dimethylation, trimethylation, and DNA methylation, was an early event in the silencing of p16(INK4a) during the tumor development. This unique chromatin pattern may be a heritable marker of epigenetic regulation for p16(INK4a) silencing during the developmental process of hepatocellular carcinogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Epigenetic regulation of the X-chromosomal macrosatellite repeat encoding for the cancer/testis gene CT47. 21811308

    Macrosatellite repeats (MSRs) present an extreme example of copy number variation, yet their epigenetic regulation in normal and malignant cells is largely understudied. The CT47 cancer/testis antigen located on human Xq24 is organized as an array of 4.8 kb large units. CT47 is expressed in the testis and in certain types of cancer, but not in non-malignant somatic tissue. We used CT47 as a model to study a possible correlation between copy number variation, epigenetic regulation and transcription originating from MSRs in normal and malignant cells. In lymphoblastoid cell lines and primary fibroblasts, CT47 expression was absent, consistent with the observed heterochromatic structure and DNA hypermethylation of the CT47 promoter. Heterochromatinization of CT47 occurs early during development as human embryonic stem cells show high levels of DNA methylation and repressive chromatin modifications in the absence of CT47 expression. In small-cell lung carcinoma cell lines with low levels of CT47 transcripts, we observed reduced levels of histone 3 lysine 9 trimethylation (H3K9me3) and trimethylated lysine 27 of histone H3 (H3K27me3) without concomitant increase in euchromatic histone modifications. DNA methylation levels in the promoter region of CT47 are also significantly reduced in these cells. This supports a model in which during oncogenic transformation, there is a relative loss of repressive chromatin markers resulting in leaky expression of CT47. We conclude that some MSRs, like CT47 and the autosomal MSRs TAF11-Like, PRR20, ZAV and D4Z4, the latter being involved in facioscapulohumeral muscular dystrophy, seem to be governed by common regulatory mechanisms with their abundant expression mostly being restricted to the germ line.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Long term transcriptional reactivation of epigenetically silenced genes in colorectal cancer cells requires DNA hypomethylation and histone acetylation. 21829702

    Epigenetic regulation of genes involves the coordination of DNA methylation and histone modifications to maintain transcriptional status. These two features are frequently disrupted in malignancy such that critical genes succumb to inactivation. 5-aza-2'-deoxycytidine (5-aza-dC) is an agent which inhibits DNA methyltransferase, and holds great potential as a treatment for cancer, yet the extent of its effectiveness varies greatly between tumour types. Previous evidence suggests expression status after 5-aza-dC exposure cannot be explained by the DNA methylation status alone.We sought to identify chromatin changes involved with short and long term gene reactivation following 5-aza-dC exposure. Two colorectal cancer cell lines, HCT116 and SW480, were treated with 5-aza-dC and then grown in drug-free media to allow DNA re-methylation. DNA methylation and chromatin modifications were assessed with bisulfite sequencing and Chromatin Immuno-Precipitation analysis.Increased H3 acetylation, H3K4 tri-methylation and loss of H3K27 tri-methylation were associated with reactivation. Hypermethylated genes that did not show increased acetylation were transiently expressed with 5-aza-dC treatment before reverting to an inactive state. Three reactivated genes, CDO1, HSPC105 and MAGEA3, were still expressed 10 days post 5-aza-dC treatment and displayed localised hypomethylation at the transcriptional start site, and also an increased enrichment of histone H3 acetylation.These observations suggest that hypomethylation alone is insufficient to reactivate silenced genes and that increased Histone H3 acetylation in unison with localised hypomethylation allows long term reversion of these epigenetically silenced genes. This study suggests that combined DNA methyltransferase and histone deacetylase inhibitors may aid long term reactivation of silenced genes.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • «
  • <
  • 1
  • >
  • »