Millipore Sigma Vibrant Logo
 

ecm554mm


23 Results Advanced Search  
Showing
Products (0)
Documents (23)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (12)
  • (7)
  • (2)
  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • RNAi-mediated silencing of vEGF-C inhibits non-small cell lung cancer progression by simultaneously down-regulating the cXCR4, cCR7, vEGFR-2 and vEGFR-3-dependent axes-in ... 21680174

    Vascular endothelial growth factor C (VEGF-C) expression is associated with the malignant tumour phenotype making it an attractive therapeutic target. We investigated the biological roles of VEGF-C in tumour growth, migration, invasion and explored the possibility of VEGF-C as a potential therapeutic target for the treatment of non-small cell lung cancer (NSCLC). A lentivirus-mediated RNA interference (RNAi) technology was used to specifically knockdown the expression of VEGF-C in A549 cells. Quantitative reverse transcriptase-polymerase chain reaction, flow cytometry, Western blot, immunohistochemistry, cellular growth, migration, invasion and ELISA assays were used to characterise VEGF-C expression in vitro. A lung cancer xenograft model in nude mice was established to investigate whether knockdown of VEGF-C reduced tumour growth in vivo. Silencing of VEGF-C suppressed tumour cell growth, migration and invasion in vitro; suppressed tumour growth, angiogenesis and lymphangiogenesis by tail vein injection of lentivirus encoded shRNA against VEGF-C in vivo. More importantly, silencing of VEGF-C also trapped the VEGFR-2, VEGFR-3, CXCR4, CCR7-dependent axes, and down-regulated the AKT, ERK and p38 signalling pathways. These results suggest that VEGF-C has a multifaceted role in NSCLC growth, migration and invasion; that VEGF-C-mediated autocrine loops with their cognate receptors and chemokine receptors are significant factors affecting tumour progression; and that RNAi-mediated silencing of VEGF-C represents a powerful therapeutic approach for controlling NSCLC growth and metastasis.Copyright © 2011 Elsevier Ltd. All rights reserved.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Gonadotropin-releasing hormone agonists suppress melanoma cell motility and invasiveness through the inhibition of alpha3 integrin and MMP-2 expression and activity. 18636163

    Cutaneous melanoma represents the leading cause of skin cancer deaths. The prognosis of highly aggressive, metastatic melanoma is still very poor, due to the resistance of the disseminated tumor to existing therapies. The clarification of the molecular mechanisms regulating melanoma growth and progression might help identify novel molecular targets for the development of new therapeutic interventions. We previously showed that gonadotropin-releasing hormone (GnRH) receptors are expressed in melanoma cells; activation of these receptors by means of GnRH agonists significantly reduces cell proliferation. In the current study, we first showed that GnRH agonists significantly reduced the metastatic behavior of melanoma cells in terms of both cell motility (haptotactic assay using laminin as the chemoattractant) and invasiveness (cell invasion assay evaluating the capacity of the cells to invade a reconstituted extracellular matrix barrier). On the basis of this observation, we then investigated the molecular mechanisms underlying the antimetastatic activity of GnRH agonists. We found that, in melanoma cells, a) the activity of the alpha3 integrin subunit is crucial for the migratory behavior of the cells; b) GnRH agonists significantly reduced alpha3 integrin expression (Western blotting and immunofluorescence studies); c) GnRH agonists significantly reduced MMP-2 expression (comparative RT-PCR) and activity (zymographic analysis performed on cell culture media). These data indicate that GnRH agonists, in addition to the previously reported antiproliferative effect, elicit a strong inhibitory activity on the migratory/invasive behavior of melanoma cells expressing GnRH receptors. These compounds reduce the metastatic potential of melanoma cells by interfering with the expression/activity of cell adhesion molecules (alpha3 integrin) and matrix metalloproteinase (MMP-2).
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • LIM and SH3 protein 1 (Lasp1) is a novel p53 transcriptional target involved in hepatocellular carcinoma. 19155088

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide with poor prognosis associated with tumor invasion and metastasis. The tumor suppressor p53 plays critical roles in tumor development, but there is increasing evidence for its involvement in tumor metastasis with the underlying mechanisms largely unexplored.
    Document Type:
    Reference
    Product Catalog Number:
    ECM554
    Product Catalog Name:
    QCM ECMatrix Cell Invasion Assay, 24-well (8 µm), fluorimetric
  • User Manual-ECM554

    Document Type:
    User Guide
    Product Catalog Number:
    ECM554
    Product Catalog Name:
    QCM ECMatrix Cell Invasion Assay, 24-well (8 µm), fluorimetric