Millipore Sigma Vibrant Logo
 

fullerene


2 Results Advanced Search  
Showing
Products (0)
Documents (2)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Comparative Pulmonary Toxicity Assessments of C60 Water Suspensions in Rats: Few Differences in Fullerene Toxicity in Vivo in Contrast to in Vitro Profiles 17630811

    It has previously been reported that the in vitro cytotoxic effects of water-soluble fullerene species are a sensitive function of their surface derivatization status. In a recent study, it was reported that doses of an aggregated form of underivatized C60, termed nano-C60, were 3−4 orders of magnitude more toxic to human dermal fibroblasts, lung epithelial cells, and normal human astrocytes when compared to identical exposures of these cell types to a fully derivatized, highly water-soluble derivative, C60(OH)24. Accordingly, the aim of this study was to test and validate these in vitro findings by comparing the in vivo pulmonary toxicity effects in rats of intratracheally instilled nano-C60 and C60(OH)24. In two combined studies, groups of rats were instilled with doses of either 0.2, 0.4, 1.5, or 3.0 mg/kg of nano-C60, C60(OH)24, or α-quartz particle types using Milli-Q water as the vehicle. Subsequently, the lungs of vehicle and particle-exposed rats were assessed using bronchoalveolar lavage (BAL) fluid biomarkers, oxidant and glutathione endpoints, airway and lung parenchymal cell proliferation methods, and histopathological evaluation of lung tissue at 1 day, 1 week, 1 month, and 3 months postinstillation exposure. Exposures to both nano-C60 or water-soluble C60(OH)24 produced only transient inflammatory and cell injury effects at 1 day postexposure (pe) and were not different from water instilled controls at any other pe time periods. An increase in lipid peroxidation endpoints vs controls was measured in BAL fluids of rats exposed to 1.5 and 3 mg/kg of nano-C60 at 1 day and 3 month pe time points. In addition, no adverse lung tissue effects were measured at 3 months postinstillation exposures to the highest dose of the two types of fullerenes. In contrast, pulmonary exposures to quartz particles in rats produced dose-dependent lung inflammatory responses characterized by neutrophils and foamy lipid-containing alveolar macrophage accumulation as well as evidence of early lung tissue thickening consistent with the development of pulmonary fibrosis. The results demonstrated little or no difference in lung toxicity effects between the two fullerene samples when compared to controls, and these data are not consistent with the previously reported in vitro effects. The findings exemplify both the difficulty in interpreting and extrapolating in vitro toxicity measurements to in vivo effects and highlight the complexities associated with probing the relevant toxicological responses of fullerene nanoparticle systems.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
  • De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. 11316856

    Ischemia-induced oxidative damage to the reperfused kidney was examined. A modified chemiluminescence method, an in situ nitro blue tetrazolium perfusion technique, and a DNA fragmentation/apoptosis-related protein assay were adapted for demonstration de novo and co-localization of reactive oxygen species (ROS) production and apoptosis formation in rat kidneys subjected to ischemia/reperfusion injury. The results showed that prolonged ischemia potentiated proapoptotic mechanisms, including increases in the Bax/Bcl-2 ratio, CPP32 expression, and poly-(ADP-ribose)-polymerase fragments, and subsequently resulted in severe apoptosis, including increases in DNA fragmentation and apoptotic cell number in renal proximal tubules (PT) and distal tubules (DT) in a time-dependent manner. The increased level of ROS detected on the renal surface was correlated with that in blood and was intensified by a prolonged interval of ischemia. The main source of ROS synthesis was the PT epithelial cells. The ROS and apoptotic nuclei detected in the PT cells can be ameliorated by superoxide dismutase (SOD) treatment before reperfusion. However, the apoptotic nuclei remained in DT in the SOD-treated rats, indicating that formation of apoptosis in DT was not influenced by the small amounts of ROS produced. In PT and DT cell cultures, significant increases in apoptotic cells and ROS were evident in PT cells after hypoxia/reoxygenation insult. Furthermore, the oxidative damage in PT, but not in DT, can be alleviated by ROS scavengers SOD and hexa(sulfobutyl)fullerene, confirming that PT are vulnerable to ROS. These results lead us to conclude that ROS produced in significant amounts in PT epithelium under ischemia/reperfusion or hypoxia/reoxygenation conditions may be responsible for the apoptotic death of these cells.
    Document Type:
    Reference
    Product Catalog Number:
    06-735
    Product Catalog Name:
    Anti-Caspase 3 Antibody
  • «
  • <
  • 1
  • >
  • »