Millipore Sigma Vibrant Logo
 

protein+a+dynabeads


5 Results Advanced Search  
Showing
Products (0)
Documents (5)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • BioVyon Protein A, an alternative solid-phase affinity matrix for chromatin immunoprecipitation. 21284925

    Chromatin immunoprecipitation (ChIP) is an important technique in the study of DNA/protein interactions. The ChIP procedure, however, has limitations in that it is lengthy, can be inconsistent, and is prone to nonspecific binding of DNA and proteins to the bead-based solid-phase matrices that are often used for the immunoprecipitation step. In this investigation, we examined the utility of a new matrix for ChIP assays, BioVyon Protein A, a solid support based on porous polyethylene. In ChIP experiments carried out using two antibodies and seven DNA loci, the performance of BioVyon Protein A was significantly better, with a greater percentage of DNA pull-down in all of the assays tested compared with bead-based matrices, Protein A Sepharose, and Dynabeads Protein A. Furthermore, the rigid porous disc format within a column made the BioVyon matrix much easier to use with fewer steps and less equipment requirements, resulting in a significant reduction in the time taken to process the ChIP samples. In summary, BioVyon Protein A provides a column-based assay method for ChIP and other immunoprecipitation-based procedures; the rigid porous structure of BioVyon enables a fast and robust protocol with higher ChIP enrichment ratios.Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
    Document Type:
    Reference
    Product Catalog Number:
    07-030
    Product Catalog Name:
    Anti-dimethyl-Histone H3 (Lys4) Antibody
  • Mutational analysis reveals a noncontractile but interactive role of actin and profilin in viral RNA-dependent RNA synthesis. 19710142

    As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role.
    Document Type:
    Reference
    Product Catalog Number:
    MAB858-3B
  • Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9. 21147068

    The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclear IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the ?-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over-accumulation of nIGF-1R. Over-accumulation of nIGF-1R may contribute to deregulated gene expression and therewith play a pathophysiological role in cancer cells.
    Document Type:
    Reference
    Product Catalog Number:
    LP1
    Product Catalog Name:
    VLDL, human
  • Characterization and functional analysis of the 5'-flanking promoter region of the mouse Tcf3 gene. 21935611

    Tcf3 is a nuclear mediator of canonical Wnt signaling which functions in many systems as a repressor of target gene transcription. In this study, we have cloned and characterized a 6.7 kb fragment of the 5'-flanking promoter region of the mouse Tcf3 gene. In silico analysis of the promoter sequence identified the existence of GC boxes and CpG islands, but failed to identify any TATA box. In addition, the promoter sequence contained putative binding sites for multiple transcription factors, including a few known to regulate the function of mTcf3. Of those, we confirmed functional binding sites for NF?B and Oct1 using a luciferase assay and ChIP. In vitro analysis revealed five potential transcription start sites which resulted in a 298 base pair 5'-untranslated region upstream of the mTcf3 translation start site ATG. Using a luciferase assay, we analyzed the activity of the cloned promoter fragment in embryonically derived neural stem cells. The luciferase activity of a 3.5 kb core promoter fragment (-3243/+211) showed up to 40-fold increased activity compared to the empty vector. Addition of sequences 5' to the 3.5 kb core promoter fragment resulted in a 20-fold drop in luciferase activity, indicating the presence of further upstream repressive elements. In vivo analysis of a 4.5 kb promoter fragment (-4303/+211) driving, the expression of EGFP in mouse embryos highly resembled endogenous expression of mTcf3.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5434
  • Loss of striatal dopaminergic terminals during the early stage in response to MPTP injection in C57BL/6 mice. 21185886

    The molecular mechanisms underlying MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced dopaminergic (DAergic) neuronal death in vivo are still not fully understood. To investigate the selective DAergic neurotoxicity, we have developed an immunological technique to isolate DAergic synaptosomes from mouse striatal tissues using an antibody against 20 amino acid residues in the extracellular second loop of dopamine transporter (DAT). The DAT protein level in the isolated DAergic synaptosomes was markedly decreased at 16 h after a single injection of 30 mg/kg MPTP, but not in striatal homogenate and crude synaptosomes fraction. GBR-12909, a dopamine uptake inhibitor, completely reversed the MPTP-induced decrease of DAT protein in the DAergic synaptosomes. These results suggest that the isolated DAergic synaptosomes can be useful to identify mechanisms of loss of the nerve terminals.
    Document Type:
    Reference
    Product Catalog Number:
    MAB369
    Product Catalog Name:
    Anti-Dopamine Transporter Antibody, NT, clone DAT-Nt
  • «
  • <
  • 1
  • >
  • »