コンテンツへスキップ
Merck

767549

ポリ(エチレングリコール)ジアクリラート

average Mn 20,000, PEG average Mn 20,000 (n~450), acrylate, ≤1000 ppm MEHQ as inhibitor

別名:

PEG diacrylate, Polyethylene glycol

ログインで組織・契約価格をご覧ください。

サイズを選択してください


この商品について

UNSPSC Code:
12162002
NACRES:
NA.23
テクニカルサービス
お困りのことがあれば、経験豊富なテクニカルサービスチームがお客様をサポートします。
お手伝いします
テクニカルサービス
お困りのことがあれば、経験豊富なテクニカルサービスチームがお客様をサポートします。
お手伝いします

製品名

ポリ(エチレングリコール)ジアクリラート, average Mn 20,000, contains ≤1000 ppm MEHQ as inhibitor

form

solid

mol wt

PEG average Mn 20,000 (n~450), average Mn 20,000

contains

≤1000 ppm MEHQ as inhibitor

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

mp

60-65 °C

Ω-end

acrylate

α-end

acrylate

polymer architecture

shape: linear
functionality: homobifunctional

storage temp.

−20°C

Quality Level

General description

Poly(ethylene glycol) diacrylate (PGEDA) is used for synthesising highly cross-linked hydrogels which are used as biomaterials in tissue engineering. These hydrogels are formed using non-cytotoxic photo initiators. PEG hydrogels can be easily covalently linked to bioactive proteins and peptides which in turn promote specific cell activity either on the surface or within the hydrogel.

Application

This homobifunctional PEG can be used in hydrogel applications; biocompatibilization; thiol-ene coupling; and other applications using cross-linked PEG networks.

pictograms

CorrosionExclamation mark

signalword

Danger

Hazard Classifications

Eye Dam. 1 - Skin Irrit. 2 - Skin Sens. 1

保管分類

11 - Combustible Solids

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


適用法令

試験研究用途を考慮した関連法令を主に挙げております。化学物質以外については、一部の情報のみ提供しています。 製品を安全かつ合法的に使用することは、使用者の義務です。最新情報により修正される場合があります。WEBの反映には時間を要することがあるため、適宜SDSをご参照ください。

767549-VAR: + 767549-BULK: + 767549-1G:

jan


最新バージョンのいずれかを選択してください:

試験成績書(COA)

Lot/Batch Number

適切なバージョンが見つかりませんか。

特定のバージョンが必要な場合は、ロット番号またはバッチ番号で特定の証明書を検索できます。

以前この製品を購入いただいたことがある場合

文書ライブラリで、最近購入した製品の文書を検索できます。

文書ライブラリにアクセスする

Won-Gun Koh et al.
Langmuir : the ACS journal of surfaces and colloids, 18(7), 2459-2462 (2002-06-29)
We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of
Pilnam Kim et al.
Lab on a chip, 6(11), 1432-1437 (2006-10-27)
We present a simple and widely applicable method to fabricate micro- and nanochannels comprised entirely of crosslinked polyethylene glycol (PEG) by using UV-assisted irreversible sealing to bond partially crosslinked PEG surfaces. The method developed here can be used to form
Julia E Leslie-Barbick et al.
Biomaterials, 32(25), 5782-5789 (2011-05-27)
Microvascularization of tissue engineered constructs was achieved by utilizing a VEGF-mimicking peptide, QK, covalently bound to a poly(ethylene glycol) hydrogel matrix. The 15-amino acid peptide, developed by D'Andrea et al., was modified with a PEG-succinimidyl ester linker on the N-terminus
Ruohong Shi et al.
Small (Weinheim an der Bergstrasse, Germany), 16(37), e2002946-e2002946 (2020-08-11)
Hydrogels with the ability to change shape in response to biochemical stimuli are important for biosensing, smart medicine, drug delivery, and soft robotics. Here, a family of multicomponent DNA polymerization motor gels with different polymer backbones is created, including acrylamide-co-bis-acrylamide

資料

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Professor Shrike Zhang (Harvard Medical School, USA) discusses advances in 3D-bioprinted tissue models for in vitro drug testing, reviews bioink selections, and provides application examples of 3D bioprinting in tissue model biofabrication.

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Shrike Zhang教授(Harvard Medical School、米国)が、in vitroの薬物試験のための3Dバイオプリンティング組織モデルの進展について述べ、バイオインクの選択基準と組織モデルのバイオファブリケーションにおける3Dバイオプリンティングの応用例を紹介します。

すべて表示

プロトコル

Frequently asked questions (FAQs) for KAPA SYBR® FAST One-Step qRT-PCR Kits.

ライフサイエンス、有機合成、材料科学、クロマトグラフィー、分析など、あらゆる分野の研究に経験のあるメンバーがおります。.

製品に関するお問い合わせはこちら(テクニカルサービス)