Si cierra, no se guardará su personalización salvo que haya añadido el artículo a su carrito de la compra o a favoritos.
Pulse OK para cerrar la herramienta MILLIPLEX® MAP o Cancelar para volver a su selección.
Elija paneles personalizables y kits premezclos - O - MAPmates™ de señalización celular
Diseñe y calcule el precio de sus kits MILLIPLEX® MAP.
Paneles personalizados y kits premezclados
Nuestra amplia cartera de productos consta de paneles multiplex que le permiten elegir, dentro del panel, los analitos que mejor se ajustan a sus requisitos. En una pestaña distinta puede elegir el formato de citocina premezclada o un kit single plex.
Kits de señalización celular y MAPmates™
Elija los kits preparados para poder explorar las vías o los procesos enteros. O diseñe sus propios kits eligiendo single plex MAPmates™ según las directrices proporcionadas.
No deben combinarse los siguientes MAPmates™: -MAPmates™ que requieren un tampón de ensayo diferente. -Pares MAPmate™ fosfoespecíficos y totales, por ejemplo, GSK3β y GSK3β (Ser 9). -MAPmates™ con panTyr y específicos de sitio; por ejemplo, receptor del fosfo-EGF y fosfo-STAT1 (Tyr701). -Más de 1 fosfo-MAPmate™ para una sola diana (Akt, STAT3). -La GAPDH y la β-tubulina no pueden combinarse con kits o MAPmates™ que contengan panTyr.
.
Número de referencia
Descripción para pedidos
Cant./Env.
Lista
Este artículo se ha añadido a favoritos.
Seleccione una especie, un tipo de panel, un kit o un tipo de muestra
Para empezar a diseñar su kit MILLIPLEX® MAP, seleccione una especie, un tipo de panel o un kit de interés.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Este artículo se ha añadido a favoritos.
Especie
Tipo de panel
Kit seleccionado
Cant.
Número de referencia
Descripción para pedidos
Cant./Env.
Precio de catálogo
96-Well Plate
Cant.
Número de referencia
Descripción para pedidos
Cant./Env.
Precio de catálogo
Añadir más reactivos (Se necesita tampón y un kit de detección para usar con MAPmates)
Cant.
Número de referencia
Descripción para pedidos
Cant./Env.
Precio de catálogo
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Opción para ahorrar espacio Los clientes que adquieran múltiples kits pueden optar por ahorrar espacio de almacenamiento retirando el embalaje del kit y recibiendo los componentes de sus ensayos multiplex en bolsas de plástico para un almacenamiento más compacto.
Este artículo se ha añadido a favoritos.
El producto se ha añadido a su carrito
Ahora puede personalizar otro kit, elegir un kit premezclado, tramitarlo o cerrar la herramienta de pedidos.
A robust procedure for the determination of 16 US EPA PAHs in both aqueous (e.g. wastewaters, industrial discharges, treated effluents) and solid samples (e.g. suspended solids and sludge) from a wastewater treatment plant (WWTP) is presented. Recovery experiments using different percentages of organic modifier, sorbents and eluting solvent mixtures were carried out in Milli-Q water (1000 mL) spiked with a mixture of the PAH analytes (100 ng/L of each analyte). The solid phase extraction (SPE) procedures applied to spiked waste water samples (1000 mL; 100 ng/L spiking level) permitted simultaneous recovery of all the 16 PAHs with yields >70% (6–13% RSD). SPE clean up procedures applied to sewage and stabilized sludge extracts, showed percent recoveries in the range 73–92% (7–13% RSD) and 71–89% (7–12% RSD), respectively. The methods were used for the determination of PAHs in aqueous and solid samples from the WWTP of Fusina (Venice, Italy). Mean concentrations, as the sum of the 16 PAHs in aqueous and suspended solid samples, were found to be approx. in the 1.12–4.62 μg/L range. Sewage and stabilized sludge samples contained mean PAH concentrations, as sum of 16 compounds, in the concentration range of 1.44–1.26 mg/kg, respectively. Extraction and clean up procedures for sludge samples were validated using EPA certified reference material IRM-104 (CRM No. 912). Instrumental analyses were performed by coupling HPLC with UV-diode array detection (UV-DAD) and fluorescence detection (FLD).
Previous findings suggest a potential therapeutic action of relaxin, the putative vasodilatory signal of normal pregnancy, in some forms of cardiovascular disease. However, the mechanisms underlying the beneficial effects of relaxin have not been fully elucidated. The purpose of this study was to determine whether the vasodilatory effects of relaxin are dependent on activation of NO synthase. We examined the effect of relaxin in male Sprague-Dawley rats given angiotensin II (Ang II; 200 ng/kg per minute SC by minipump), the NO synthase inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME; 1.5 mg/100 g IV followed by 150 mg/L in drinking water), or vehicle for 3 weeks. After 7 days of Ang II or l-NAME, mean arterial pressure was elevated compared with baseline. Relaxin was administered (4 μg/h, SC by minipump) for the next 2 weeks of Ang II, l-NAME, or vehicle treatment. Two-week relaxin treatment alone slightly reduced mean arterial pressure in normotensive rats. Three weeks of either Ang II or l-NAME treatment alone produced hypertension, albuminuria, mild glomerular sclerosis, reduced nitric oxide metabolite excretion, and increased oxidative stress (excretion of hydrogen peroxide and thiobarbituric acid reactive substances and renal cortex nitrotyrosine abundance). Relaxin reduced mean arterial pressure, albumin excretion, and oxidative stress markers and preserved glomerular structure and nitric oxide metabolite excretion in Ang II-treated rats; however, relaxin did not attenuate these changes in the rats treated with l-NAME. None of the treatments affected protein abundance of neuronal or endothelial NO synthase in the kidney cortex. These data suggest that the vasodilatory effects of relaxin are dependent on a functional NO synthase system and increased NO bioavailability possibly because of a reduction in oxidative stress.
During cell division, the molecular motor Eg5 crosslinks overlapping antiparallel microtubules and pushes them apart to separate mitotic spindle poles. Dynein has been proposed as a direct antagonist of Eg5 at the spindle equator, pulling on antiparallel microtubules and favoring spindle collapse. Some of the experiments supporting this hypothesis relied on endpoint quantifications of spindle phenotypes rather than following individual cell fates over time. Here, we present a mathematical model and proof-of-principle experiments to demonstrate that endpoint quantifications can be fundamentally misleading because they overestimate defective phenotypes. Indeed, live-cell imaging reveals that, while depletion of dynein or the dynein binding protein Lis1 enables spindle formation in presence of an Eg5 inhibitor, the activities of dynein and Eg5 cannot be titrated against each other. Thus, dynein most likely antagonizes Eg5 indirectly by exerting force at different spindle locations rather than through a simple push-pull mechanism at the spindle equator.