Millipore Sigma Vibrant Logo
 

Mangan


130 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (72)
  • (20)
  • (10)
  • (2)
  • (1)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. 17785595

    We previously reported marked differences in small intestinal morphology, including changes in crypt depth and villous height, after inoculation of germ-free pigs with different bacterial species. In an attempt to identify the mechanisms governing changes in villous morphology associated with bacterial colonization, 2 gnotobiotic experiments were performed. In each experiment, 16 piglets were allocated to 4 treatment groups including germ-free (GF), monoassociation with Lactobacillus fermentum (LF) or Escherichia coli (EC), or conventionalized with sow feces (SF). Piglets were reared under gnotobiotic conditions until 14 d of age, at which time whole intestinal tissue and enterocytes were collected for histological, gene expression, and protein analysis. Proliferating cell nuclear antigen, tumor necrosis factor alpha (TNFalpha), Fas ligand (FasL), CD3epsilon, caspase 3 (casp3), and toll-like receptors (TLR)2, 4, and 9 expression were measured by quantitative PCR. Activated casp3 was measured by Western blot. Increased abundance of activated casp3 and transcripts encoding proliferating cell nuclear antigen, TNFalpha, CD3epsilon, and FasL was observed in SF and EC treatment groups compared with GF and LF. Expression of TLR2 was increased (P < 0.05) in the SF treatment and tended to be greater (P < 0.08) in EC relative to LF and GF. Results indicate that conventional bacteria and E. coli but not L. fermentum increase overall cell turnover by stimulating increased apoptosis through the expression of FasL and TNFalpha and by increasing cell proliferation. The differential regulation of TLR expression indicates that microbially induced changes may be mediated in part by these receptors. Induction of inflammatory responses and activation of apoptosis through death receptors appears to play a significant role in enterocyte turnover mediated by commensal bacteria.
    Tipo de documento:
    Referencia
    Referencia del producto:
    CC119
  • Manganese superoxide dismutase expression is negatively associated with microRNA-301a in human pancreatic ductal adenocarcinoma. 26384137

    Manganese superoxide dismutase (MnSOD) expression has been found to be low in human pancreatic ductal adenocarcinoma (PDAC). Previously, we have reported that microRNA-301a (miR-301a) was found being upregulated via nuclear factor-κB (NF-κB) feedback loop in human PDAC. In this study, we investigate whether the miR-301a expression level is associated with MnSOD expression in human PDAC. We established a xenograft PDAC mouse model using transfected PanC-1 cells (miR-301a antisense or scrambled control) to investigate tumor growth and the interaction between MnSOD and miR-301a. The animal study indicated that miR-301a antisense transfection could significantly decrease the growth rate of inoculated PDAC cells, and this decrease in tumor growth rate is associated with increased MnSOD expression. To evaluate the MnSOD-miR-301a correlation in human PDAC, we have analyzed a total of 60 PDAC specimens, along with 20 normal pancreatic tissue (NPT) specimens. Human specimens confirmed a significant decrease of MnSOD expression in PDAC specimens (0.88±0.38) compared with NPT control (2.45±0.76; P<0.05), whereas there was a significant increase in miR-301a levels in PDAC specimens (0.89±0.28) compared with NPT control (0.25±0.41; P<0.05). We conclude that MnSOD expression is negatively associated with miR-301a levels in PDAC tissues, and lower miR-301a levels are associated with increased MnSOD expression and inhibition of PDAC growth.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-984
    Nombre del producto:
    Anti-Mn-SOD Antibody
  • Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. 12558996

    Manganese ethylene-bis-dithiocarbamate (Mn-EBDC) is the major active element of maneb, a pesticide linked to parkinsonism in certain individuals upon chronic exposure. Additionally, it has been shown to produce dopaminergic neurodegeneration in mice systemically coexposed to another pesticide, 1,1'-dimethyl-4,4'-bipyridinium (paraquat). Here, we described a rat model in which selective dopaminergic neurodegeneration was produced by delivering Mn-EBDC directly to the lateral ventricles. After establishing this model, we tested whether Mn-EBDC provoked dopamine efflux in the striatum, a well-known phenomenon produced by the mitochondrial inhibitor 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that causes parkinsonism in humans, as well as in some animals. Finally, we investigated whether Mn-EBDC directly inhibited mitochondrial function in vitro using isolated brain mitochondria. Our data demonstrated that Mn-EBDC induced extensive striatal dopamine efflux that was comparable with that induced by MPP+, and that Mn-EBDC preferentially inhibited mitochondrial complex III. As mitochondrial dysfunction is pivotal in the pathogenesis of Parkinson's disease (PD), our results support the proposal that exposure to pesticides such as maneb, or other naturally occurring compounds that inhibit mitochondrial function, may contribute to PD development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1511
  • A zebrafish model of manganism reveals reversible and treatable symptoms that are independent of neurotoxicity. 25261567

    Manganese (manganese ion; referred to as Mn) is essential for neuronal function, yet it is toxic at high concentrations. Environmental and occupational exposure to high concentrations of Mn causes manganism, a well-defined movement disorder in humans, with symptoms resembling Parkinson's disease (PD). However, manganism is distinct from PD and the neural basis of its pathology is poorly understood. To address this issue, we generated a zebrafish model of manganism by incubating larvae in rearing medium containing Mn. We find that Mn-treated zebrafish larvae exhibit specific postural and locomotor defects. Larvae begin to float on their sides, show a curved spine and swim in circles. We discovered that treatment with Mn causes postural defects by interfering with mechanotransduction at the neuromasts. Furthermore, we find that the circling locomotion could be caused by long-duration bursting in the motor neurons, which can lead to long-duration tail bends in the Mn-treated larvae. Mn-treated larvae also exhibited fewer startle movements. Additionally, we show that the intensity of tyrosine hydroxylase immunoreactivity is reversibly reduced after Mn-treatment. This led us to propose that reduced dopamine neuromodulation drives the changes in startle movements. To test this, when we supplied an external source of dopamine to Mn-treated larvae, the larvae exhibited a normal number of startle swims. Taken together, these results indicate that Mn interferes with neuronal function at the sensory, motor and modulatory levels, and open avenues for therapeutically targeted studies on the zebrafish model of manganism.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB318
    Nombre del producto:
    Anti-Tyrosine Hydroxylase Antibody, clone LNC1
  • Manganese superoxide dismutase induction by iron is impaired in Friedreich ataxia cells. 11734214

    Iron-mediated oxidative stress has been implicated in the pathology of the neurodegenerative disease Friedreich ataxia (FRDA). Here, we show that normal upregulation of the stress defense protein manganese superoxide dismutase (MnSOD) fails to occur in FRDA fibroblasts exposed to iron. This impaired induction was observed at iron levels in which increased activation of the redox-sensitive factor NF-kappaB was absent. Furthermore, MnSOD induction could only be partially suppressed by antioxidants. We conclude that an NF-kappaB-independent pathway that may not require free radical signaling is responsible for the reduction of MnSOD induction. This impairment could constitute both a novel defense mechanism against iron-mediated oxidative stress in cells with mitochondrial iron overload and conversely, an alternative source of free radicals that could contribute to the disease pathology.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1594
    Nombre del producto:
    Anti-Frataxin Antibody, exon 4, clone 1G2