Millipore Sigma Vibrant Logo
 

cell+signaling+technology


147 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (108)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. 20008564

    Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent.
    Tipo de documento:
    Referencia
    Referencia del producto:
    12-371
    Nombre del producto:
    Normal Mouse IgG
  • Temporal assessment of caspase activation in experimental models of focal and global ischemia. 12915250

    Rodent models of focal and global ischemia were used to examine caspase activation. Several readouts were employed on identical tissue to provide correlative measurement of caspase induction, activation and enzymatic activity. In a rat focal ischemia model, caspase-3 enzymatic activity, as recorded by DEVD-AMC cleavage, peaked in penumbral cortex at 6-12 h following ischemia, correlating with increases in caspase 3-cleaved substrates of PARP and alpha-spectrin and subsequent disappearance of caspase-3 zymogen. Although induction of caspases 8 and 2 proteins was detectable as early as 6 h following ischemia, examination of the same tissues for caspase 8 or 2 enzymatic activities did not show significant modulation up to 12 h after ischemic insult. Caspase 9 induction was evident only after 24 h postischemia and did not correlate with elevated LDHD-AMC cleavage. Following global ischemia in gerbils, levels of caspase-3 enzyme activity peaked at 12 h in hippocampal tissue extracts. Cleaved caspase-3 signal was prominent in NeuN-positive layers in the CA1 region 6-12 h following ischemia. Interestingly, strong caspase-3 immunoreactivity was also detected in the subgranular zone of the dentate gyrus, a known region of ischemia-induced neurogenesis. Caspase-3 activation may be responsible for the loss of these cells, thereby hindering the endogenous recovery process.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1622
    Nombre del producto:
    Anti-Spectrin alpha chain (nonerythroid) Antibody, clone AA6
  • Progesterone potentiates calcium release through IP3 receptors by an Akt-mediated mechanism in hippocampal neurons. 19081133

    Progesterone (P4) is a steroid hormone that plays multiple roles in the central nervous system (CNS) including promoting neuroprotection. However, the precise mechanisms involved in its neuroprotective effects are still unknown. Given that the regulation of the intracellular calcium (Ca(2+)) concentration is critical for cell survival, we determined if inositol 1, 4, 5-trisphosphate receptors (IP(3)Rs) are relevant targets of P4. Using primary hippocampal neurons, we tested the hypothesis that P4 controls the gain of IP3R-mediated intracellular Ca(2+) signaling in neurons and characterized the subcellular distribution and phosphorylation of potential signaling intermediates involved in P4s actions. Our results reveal that P4 treatment altered the intensity and distribution of IP3R immunoreactivity and induced the nuclear translocation of phosphorylated Akt. Further, P4 potentiated IP(3)R-mediated intracellular Ca(2+) responses. These results suggest a potential involvement of P4 in particular and of steroid hormone signaling pathways in general in the control of intracellular Ca(2+) signaling and its related functions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. 22693207

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose and insulin tolerance tests were normal in TBC1D1-deficient Nob1.10(SJL) mice, yet the 4-h-fasted insulin concentration was increased. Insulin-stimulated peripheral glucose utilization during a euglycemic hyperinsulinemic clamp was similar between genotypes, whereas the suppression of hepatic glucose production was increased in TBC1D1-deficient mice. In isolated extensor digitorum longus (EDL) but not soleus muscle, glucose transport in response to insulin, AICAR, or contraction was impaired by TBC1D1 deficiency. The reduction in glucose transport in EDL muscle from TBC1D1-deficient Nob1.10(SJL) mice may be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice. In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Nonradioactive methods for the assay of phosphoinositide 3-kinases and phosphoinositide phosphatases and selective detection of signaling lipids in cell and tissue extrac ... 12605860

    We describe a novel approach to quantitation of phosphoinositides in cell extracts and in vitro enzyme-catalyzed reactions using suitably tagged and/or labeled pleckstrin homology (PH) domains as probes. Stable complexes were formed between the biotinylated target lipid and an appropriate PH domain, and phosphoinositides present in samples were detected by their ability to compete for binding to the PH domain. Complexes were detected using AlphaScreen technology or time-resolved FRET. The assay procedure was validated using recombinant PI 3-kinase gamma with diC8PtdIns(4,5)P(2) as substrate and general receptor for phosphoinositides-1 (GRP1) PH domain as a PtdIns(3,4,5)P(3)-specific probe. This PI 3-kinase assay was robust, was suitable for high-throughput screening platforms, and delivered expected IC(50) values for reference compounds. The approach is adaptable to a wide range of enzymes as demonstrated by assays of the tumor suppressor protein, PTEN, a phosphoinositide 3-phosphatase, which was measured using the same reagents but with diC8PtdIns(3,4,5)P(3) as substrate. PtdIns(3,4,5)P(3) present in lipid extracts of Swiss 3T3 and HL60 cells stimulated with platelet-derived growth factor and fMLP, respectively, was also detectable at picomole sensitivity. The versatility and general utility of this approach were demonstrated by exchanging the GRP1 PH domain for that of TAPP1 (which binds PtdIns(3,4)P(2) and not PtdIns(3,4,5)P(3)). This system was used to monitor the accumulation of PtdIns(3,4)P(2) in Swiss 3T3 cells exposed to an oxidative stress. It is therefore proposed that similar procedures should be capable of measuring any known phosphoinositide present in cell and tissue extracts or produced in kinase and phosphatase assays by using one of several well-characterized protein domains with appropriate phosphoinositide-binding specificity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    14-558
    Nombre del producto:
    PI3 Kinase (p120γ), 20 µg
  • CG0006, a novel histone deacetylase inhibitor, induces breast cancer cell death via histone-acetylation and chaperone-disrupting pathways independent of ER status. 21184271

    We previously reported that CG0006, a novel hydroxamate-based pan-histone deacetylase inhibitor (HDACI), suppresses the growth of human cancer cells. Here, we tested the ability of CG0006 to inhibit breast cancer cell proliferation in relation to estrogen receptor (ER) status, and examined changes in the expression of cell-cycle regulatory proteins. CG0006 effects on the proliferation of multiple human cancer cell lines were tested using MTT and MTS assays. Changes in estrogen-signaling proteins and cell-cycle regulatory proteins were examined by western blotting and quantitative RT-PCR, and cell-cycle effects were tested using flow cytometry. CG0006 increased histone H3 and H4 acetylation, up-regulated p21 protein, and promoted cell-cycle arrest, inducing G(2)/M-phase accumulation in ER-positive MCF7 cells, and G(1)- and G(2)/M-phase accumulation in ER-negative MDA-MB-231 cells. In both cell types, CG0006 treatment (1 μM) reduced the levels of the estrogen-signaling proteins ERα and cyclin D1, and promoted massive degradation of cell-cycle regulatory proteins. CG0006 down-regulated the histone deacetylase HDAC6 at the protein level in association with a subsequent increase in Hsp90 and α-tubulin acetylation. HDAC6 depletion using small interfering RNA produced a protein-degradation phenotype similar to that of CG0006 treatment. These findings suggest that CG0006 inhibits breast cancer cell growth by two different pathways: a histone acetylation-dependent pathway, and a non-epigenetic pathway that disrupts chaperone function.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-748
  • Neuronal death resulting from targeted disruption of the Snf2 protein ATRX is mediated by p53. 19020049

    ATRX, a chromatin remodeling protein of the Snf2 family, participates in diverse cellular functions including regulation of gene expression and chromosome alignment during mitosis and meiosis. Mutations in the human gene cause alpha thalassemia mental retardation, X-linked (ATR-X) syndrome, a rare disorder characterized by severe cognitive deficits, microcephaly and epileptic seizures. Conditional inactivation of the Atrx gene in the mouse forebrain leads to neonatal lethality and defective neurogenesis manifested by increased cell death and reduced cellularity in the developing neocortex and hippocampus. Here, we show that Atrx-null forebrains do not generate dentate granule cells due to a reduction in precursor cell number and abnormal migration of differentiating granule cells. In addition, fewer GABA-producing interneurons are generated that migrate from the ventral telencephalon to the cortex and hippocampus. Staining for cleaved caspase 3 demonstrated increased apoptosis in both the hippocampal hem and basal telencephalon concurrent with p53 pathway activation. Elimination of the tumor suppressor protein p53 in double knock-out mice rescued cell death in the embryonic telencephalon but only partially ameliorated the Atrx-null phenotypes at birth. Together, these findings show that ATRX deficiency leads to p53-dependent neuronal apoptosis which is responsible for some but not all of the phenotypic consequences of ATRX deficiency in the forebrain.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1583
    Nombre del producto:
    Anti-Neuropeptide Y Antibody
  • Loss of Shp2-mediated mitogen-activated protein kinase signaling in Muller glial cells results in retinal degeneration. 21576358

    Extensive studies have identified many growth factors and intracellular pathways that can promote neuronal survival after retinal injury, but the intrinsic survival mechanisms in the normal retina are poorly understood. Here we report that genetic ablation of Shp2 (Ptpn11) protein phosphatase resulted in progressive apoptosis of all retinal cell types. Loss of Shp2 specifically disrupted extracellular signal-regulated kinase (ERK) signaling in Müller cells, leading to Stat3 activation in photoreceptors. However, neither inactivation of Stat3 nor stimulation of AKT signaling could ameliorate the Shp2 retinal degeneration. Instead, constitutively activated Kras signaling not only rescued the retinal cell numbers in the Shp2 mutant but also functionally improved the electroretinogram recording (ERG). These results suggest that Shp2-mediated Ras-mitogen-activated protein kinase (Ras-MAPK) signaling plays a critical role in Müller cell maturation and function, which is necessary for the survival of retinal neurons.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-570
    Nombre del producto:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. 18182619

    Neuropilin-2 (NRP2) is a high-affinity kinase-deficient receptor for vascular endothelial growth factor (VEGF) and semaphorin 3F. We investigated its function in human colorectal cancers.Immunohistochemistry and immunoblotting were used to assess NRP2 expression levels in colorectal tumors and colorectal cancer cell lines, respectively. HCT-116 colorectal cancer cells stably transfected with short hairpin RNA (shRNAs) against NRP2 or control shRNAs were assayed for proliferation by the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and for activation of the VEGFR1 pathway by immunoblotting. Soft agar assays, Annexin V staining, and Boyden chamber assays were used to examine anchorage-independent growth, apoptosis in response to hypoxia, and cell migration/invasion, respectively, in HCT-116 transfectants. Tumor growth and metastasis were analyzed in mice (groups of 10) injected with shRNA-expressing HCT-116 cells. The effect of in vivo targeting of NRP2 by small interfering RNA (siRNA) on the growth of hepatic colorectal tumors derived from luciferase-expressing HCT-116 cells was assessed by measuring changes in bioluminescence and final tumor volumes. All statistical tests were two-sided.NRP2 expression was substantially higher in tumors than in adjacent mucosa. HCT-116 transfectants with reduced NRP2 levels had reduced VEGFR1 signaling, but proliferation was unchanged. Anchorage-independent growth, survival under hypoxic conditions, and motility/invasiveness were also reduced. In vivo, HCT-116 transfectants with reduced NRP2 demonstrated decreased tumor growth, fewer metastases, and increased apoptosis compared with control cells. Hepatic colorectal tumors in mice treated with NRP2 siRNAs were statistically significantly smaller than those in mice treated with control siRNAs (at 28 days after implantation, mean control siRNAs = 420 mm3, mean NRP2 siRNAs = 36 mm3, NRP2 vs control: difference = 385 mm3, 95% confidence interval = 174 mm3 to 595 mm3, P = .005).NRP2 on colorectal carcinoma cells is important for tumor growth and is a potential therapeutic target in human cancers where it is expressed.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-758
    Nombre del producto:
    Anti-phospho-Flt-1 (Tyr1213) Antibody
  • Elevation of myostatin and FOXOs in prolonged muscular impairment induced by eccentric contractions in rat medial gastrocnemius muscle. 19959771

    This study aimed to investigate torque deficit and activation of protein synthesis and/or protein degradation signaling pathways during the early and recovery phase after high- and low-velocity eccentric contractions (ECs). Male Wistar rats (n = 36) were randomly divided into fast angular velocity ECs group (FAST; 180 degrees/s; n = 12), slow ECs group (SLOW; 30 degrees/s; n = 12), and control group (control; n = 12). ECs comprised four sets of five forced dorsiflexions combined with electrical stimulation of the plantar flexors. Isometric tetanic torque was measured before and after ECs. Tissue contents of Akt(P) (P, phosphorylated), mammalian target of rapamycin (mTOR)(P), 70-kDa ribosomal protein S6 kinase (P70S6k), P70S6k(P), forkhead transcription factor 1 of the O class (FOXO1), FOXO1(P), FOXO3, FOXO3(P), myostatin, and activin receptor type IIB (ActRIIB) were measured. The isometric tetanic torque after ECs was significantly lower in FAST than in SLOW (days 1, 3, and 5, P < 0.05; day 2, P < 0.01). The ratio of P70S6k(P) against total P70S6k on days 2 and 7 was significantly higher in SLOW than in the control. The ratio of FOXO1 against total FOXO1, the ratio of FOXO3a against total FOXO3a, and myostatin on days 2 and 7 were significantly higher in FAST than in the control, while that of ActRIIB on day 7 was significantly lower in SLOW than in the other two groups. These results suggest that EC intensity plays a key role in impairment of muscular function and activation of protein synthesis and/or protein degradation signaling pathways.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB3239