Millipore Sigma Vibrant Logo
 

cell characterization kit


326 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (288)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (249)
  • (22)
  • (14)
  • (2)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. 18451800

    Human embryonic stem (hES) cells are self-renewing, pluripotent cells that are valuable research tools and hold promise for use in regenerative medicine. Most hES cell lines are derived from cryopreserved human embryos that were created during in vitro fertilization (IVF) and are in excess of clinical need. Embryos that are discarded during the IVF procedure because of poor morphology and a low likelihood for generating viable pregnancies or surviving the cryopreservation process are also a viable source of hES cells. In this protocol, we describe how to derive novel hES cells from discarded poor-quality embryos and how to maintain the hES cell lines.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB4303
  • Differentiation and regenerative capacities of human odontoma-derived mesenchymal cells. 19281762

    Regenerating human tooth ex vivo and biological repair of dental caries are hampered by non-viable odontogenic stem cells that can regenerate different tooth components. Odontoma is a developmental dental anomaly that may contain putative post-natal stem cells with the ability to differentiate and regenerate in vivo new dental structures that may include enamel, dentin, cementum and pulp tissues. We evaluated odontoma tissues from 14 patients and further isolated and characterized human odontoma-derived mesenchymal cells (HODCs) with neural stem cell and hard tissue regenerative properties from a group of complex odontoma tissues from 1 of 14 patients. Complex odontoma was more common (9 of 14) than compound type and females (9 of 14) were more affected than males in our set of patients. HODCs were highly proliferative like dental pulp stem cells (DPSCs) but demonstrated stronger neural immunophenotype than both DPSCs and mandible bone marrow stromal cells (BMSCs) by expressing higher levels of nestin, Sox 2 and betaIII-tubulin. When transplanted with hydroxyapatite/tricalcium phosphate into immunocompromised mice, HODCs differentiated and regenerated calcified hard tissues in vivo that were morphologically and quantitatively comparable to those generated by DPSCs and BMSCs. When transplanted with polycaprolactone (biodegradable carrier), HODCs differentiated to form new predentin on the surface of a dentin platform. Newly formed predentin contained numerous distinct dentinal tubules and an apparent dentin-pulp arrangement. HODCs represent unique odontogenic progenitors that readily commit to formation of dental hard tissues.
    Tipo de documento:
    Referencia
    Referencia del producto:
    SCR060
    Nombre del producto:
    Human Neural Stem Cell Characterization Kit