Millipore Sigma Vibrant Logo
 

polyclonal+anti-phosphor-histone+h3


5 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (5)
Páginas (0)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (3)
  • (2)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • «
  • <
  • 1
  • >
  • »
  • Retinal histogenesis and cell differentiation in an elasmobranch species, the small-spotted catshark Scyliorhinus canicula. 22332849

    Here we present a detailed study of the major events in the retinal histogenesis in a slow-developing elasmobranch species, the small-spotted catshark, during embryonic, postnatal and adult stages using classical histological and immunohistological methods, providing a complete neurochemical characterization of retinal cells. We found that the retina of the small-spotted catshark was fully differentiated prior to birth. The major developmental events in retinal cell differentiation occurred during the second third of the embryonic period. Maturational features described in the present study were first detected in the central retina and, as development progressed, they spread to the rest of the retina following a central-to-peripheral gradient. While the formation of both plexiform layers occurs simultaneously in the retina of the most common fish models, in the small-spotted catshark retina the emergence of the outer plexiform layer was delayed with respect to the inner plexiform layer. According to the expression of the markers used, retinal cell differentiation followed a vitreal-to-scleral gradient, with the exception of Müller cells that were the last cell type generated during retinogenesis. This vitreal-to-scleral progression of neural differentiation seems to be specific to slow-developing fish species.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB302
    Nombre del producto:
    Anti-Glutamine Synthetase Antibody, clone GS-6
  • Development of a short-term fluorescence-based assay to assess the toxicity of anticancer drugs on rat stem/progenitor spermatogonia in vitro. 20427756

    In vitro culture of rodent spermatogonial stem cells (SSCs) has become an important asset in the study of mammalian SSC biology. Supported by added growth factors, SSCs divide in culture and form aggregates of stem/progenitor spermatogonia, termed clusters. Recent studies have shown that serial passaging of clusters results in long-term maintenance and amplification of the SSC pool and that this culture system can also be used for short-term semiquantification of SSC activity. Here, we report the development of an automated assay to assess the activity of rat stem/progenitor spermatogonia in vitro and its application for investigating the cytotoxicity of chemotherapeutic drugs on these cells. Cultures of EGFP-expressing rat spermatogenic cells allowed us to determine the number and two-dimensional surface area of clusters using an automated fluorescence imaging system, thereby providing quantitative data of SSC activity. Using this assay, we examined the germ cell toxicity of three drugs that are routinely used in testicular cancer therapy, namely, bleomycin, cisplatin, and etoposide, alone and in combination. All three drugs showed a significant and dose-dependent reduction of cluster number and surface area, indicating their adverse effects specific to spermatogonia. The inhibitory concentration at which cluster number and surface area are inhibited by 50% (IC(50)) was the lowest with etoposide and the highest with cisplatin, implying that etoposide was most toxic to spermatogonia in vitro. These results suggest that the SSC culture should provide an effective and efficient system to assess the germ cell toxicity of various drugs and chemical compounds.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Degradation of p21Cip1 through anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20) ubiquitin ligase complex-mediated ubiquitylation is inhibited by ... 22045811

    Cyclin-dependent kinase inhibitor p21Cip1 plays a crucial role in regulating cell cycle arrest and differentiation. It is known that p21Cip1 increases during terminal differentiation of cardiomyocytes, but its expression control and biological roles are not fully understood. Here, we show that the p21Cip1 protein is stabilized in cardiomyocytes after mitogenic stimulation, due to its increased CDK2 binding and inhibition of ubiquitylation. The APC/CCdc20 complex is shown to be an E3 ligase mediating ubiquitylation of p21Cip1 at the N terminus. CDK2, but not CDC2, suppressed the interaction of p21Cip1 with Cdc20, thereby leading to inhibition of anaphase-promoting complex/cyclosome and its activator Cdc20 (APC/CCdc20)-mediated p21Cip1 ubiquitylation. It was further demonstrated that p21Cip1 accumulation caused G2 arrest of cardiomyocytes that were forced to re-enter the cell cycle. Taken together, these data show that the stability of the p21Cip1 protein is actively regulated in terminally differentiated cardiomyocytes and plays a role in inhibiting their uncontrolled cell cycle progression. Our study provides a novel insight on the control of p21Cip1 by ubiquitin-mediated degradation and its implication in cell cycle arrest in terminal differentiation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-570
    Nombre del producto:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • «
  • <
  • 1
  • >
  • »