Millipore Sigma Vibrant Logo
 

+Magnesium-Test


16 Results Erweiterte Suche  
Suchergebnisse

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (4)
  • (3)
  • (1)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • «
  • <
  • 1
  • >
  • »
  • Effect of cold-setting calcium- and magnesium phosphate matrices on protein expression in osteoblastic cells. 21210513

    Bone loss due to accidents or tissue diseases requires replacement of the structure by either autografts, allografts, or artificial materials. Reactive cements, which are based on calcium phosphate chemistry, are commonly used in nonload bearing areas such as the craniofacial region. Some of these materials are resorbed by the host under physiological conditions and replaced by bone. The aim of this study was to test different calcium and magnesium cement composites in vitro for their use as bone substitution material. Phase composition of calcium deficient hydroxyapatite (Ca(9) (PO(4) )(5) HPO(4) OH), brushite (CaHPO(4) ·2H(2) O), and struvite (MgNH(4) PO(4) ·6H(2) O) specimens has been determined by means of X-ray diffraction, and compressive strength was measured. Cell growth and activity of osteoblastic cells (MG 63) on the different surfaces was determined, and the expression of bone marker proteins was analyzed by western blotting. Cell activity normalized to cell number revealed higher activity of the osteoblasts on brushite and struvite when compared to hydroxyapatite and also the expression of osteoblastic marker proteins was highest on brushite scaffolds. While brushite sets under acidic conditions, formation of struvite occurs under physiological pH, similar to hydroxyapatite cements, providing the possibility of additional modifications with proteins or other active components.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1061
    Produktbezeichnung:
    Anti-Bone Sialoprotein II Antibody, CT, clone ID1.2
  • Use of sulfate production as a measure of short-term sulfur amino acid catabolism in humans. 11350767

    There is no fully satisfactory method for measuring amino acid catabolism in the nonsteady state that follows normal protein consumption. Because sulfate is the major product of sulfur amino acid catabolism, we tested whether its production can be accurately depicted using simple tracer or nontracer approaches under basal conditions and after the intravenous administration of a known amount of sulfate. In the basal postabsorptive state, serum sulfate concentration and urinary sulfate excretion remained constant for many hours, but the apparent steady-state serum sulfate rate of appearance achieved with primed continuous oral administration of sodium [(34)S]sulfate was 20% higher than urinary sulfate excretion. By contrast, after magnesium sulfate infusion, the increase in sulfate production above basal accounted for 95% over 6 h and 98% over 9 h of the administered dose when measured simply as urinary inorganic sulfate excretion corrected for changes in its extracellular fluid content. Using the latter method, we measured sulfate production after oral methionine and intravenous infusion of methionine in a mixture of other essential amino acids. Sulfate production above basal accounted for 59% over 6 h and 75% over 9 h of the oral methionine dose. Similar results were obtained with the mixed amino acid infusion, but interpretation of the latter experiment was limited by the mild protein sparing (and, hence, reduced endogenous sulfate production) induced by the amino acid infusion. We conclude that a simple nontracer method can provide an accurate measure of sulfate production and, hence, sulfur amino acid catabolism over collection periods as short as 6 h after a test meal. A significant portion of the sulfur derived from methionine appears to be retained in nonprotein compounds immediately after its ingestion.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    HI-14K
    Produktbezeichnung:
    Human Insulin-Specific RIA
  • Determination of sodium, potassium, calcium, magnesium, zinc, and iron in emulsified egg samples by flame atomic absorption spectrometry. 20006088

    In this study, oil-in-water formulations were optimized to determine sodium, potassium, calcium, magnesium, zinc, and iron in emulsified egg samples by flame atomic absorption spectrometry (FAAS). This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures and allows the calibration to be carried out using aqueous standards. Different oily phases such as corn oil, decyl oleate and octyl stearate were tested, as well as Tween 80, Triton X-100 and Triton 114 were analyzed as surfactants. The optimum type and proportion of formulations were determined and their use depended on the element studied. The emulsion preparation was performed by a conventional method that involves mixing both phases at 60 degrees C by magnetic stirring and phase inversion to change the water-to-oil ratio by increasing the volume of the surfactant-water external phase and correspondingly decreasing the volume of internal phase. The accuracy of the method was further confirmed by determining the metals in a whole egg powder CRM and recoveries ranged from 97.5% for Mg to 102.2% for Na, with relative standard deviations lower than 2.3%. The precision of the procedures was determined through repeatability (intra-day precision) and intermediate precision (inter-day). The repeatability presented RSD values lower than 4.2%. The intermediate precision was evaluated using the RSD and F-test. The RSD values to intermediate precision was lower than 5.3% and the computed F-values were lower than tabulated F-values, indicating no significant difference between the results obtained on different days. The proposed method including, sample emulsification for subsequent metal determination for FAAS, has proved to be sensitive, reproducible, simple and economical.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    2752
    Produktbezeichnung:
    BrdU Cell Proliferation Kit
  • «
  • <
  • 1
  • >
  • »