Millipore Sigma Vibrant Logo
 

AMI-5


30 Results Erweiterte Suche  
Suchergebnisse

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (16)
  • (1)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application. 21907165

    Stem cell therapy is a promising tool to improve outcome after acute myocardial infarction (AMI), but needs to be optimized since results from clinical applications remain ambiguous. A potent source of stem cells is the stromal vascular fraction of adipose tissue (SVF), which contains high numbers of adipose derived stem cells (ASC). We hypothesized that: 1) intravenous injection can be used to apply stem cells to the heart. 2) Uncultured SVF cells are easier and safer when cultured ASCs. 3) Transplantation after the acute inflammation period of AMI is favorable over early injection. For this, AMI was induced in rats by 40min of coronary occlusion. One or seven days after AMI, rats were intravenously injected with vehicle, 5×10(6) uncultured rat SVF cells or 1×10(6) rat ASCs. Rats were analyzed 35 days after AMI. Intravenous delivery of both fresh SVF cells and cultured ASCs 7 days after AMI significantly reduced infarct size compared to vehicle. Similar numbers of stem cells were found in the heart, after treatment with fresh SVF cells and cultured ASCs. Importantly, no adverse effects were found after injection of SVF cells. Using cultured ASCs, however, 3 animals had shortness of breath, and one animal died during injection. In contrast to application at 7 days post AMI, injection of SVF cells 1 day post AMI resulted in a small but non-significant infarct reduction (p=0.35). Taken together, intravenous injection of uncultured SVF cells subsequent to the acute inflammation period, is a promising stem cell therapy for AMI.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Impaired autophagy contributes to adverse cardiac remodeling in acute myocardial infarction. 25409294

    Autophagy is activated in ischemic heart diseases, but its dynamics and functional roles remain unclear and controversial. In this study, we investigated the dynamics and role of autophagy and the mechanism(s), if any, during postinfarction cardiac remodeling.Acute myocardial infarction (AMI) was induced by ligating left anterior descending (LAD) coronary artery. Autophagy was found to be induced sharply 12-24 hours after surgery by testing LC3 modification and Electron microscopy. P62 degradation in the infarct border zone was increased from day 0.5 to day 3, and however, decreased from day 5 until day 21 after LAD ligation. These results indicated that autophagy was induced in the acute phase of AMI, and however, impaired in the latter phase of AMI. To investigate the significance of the impaired autophagy in the latter phase of AMI, we treated the mice with Rapamycin (an autophagy enhancer, 2.0 mg/kg/day) or 3-methyladenine (3MA, an autophagy inhibitor, 15 mg/kg/day) one day after LAD ligation until the end of experiment. The results showed that Rapamycin attenuated, while 3MA exacerbated, postinfarction cardiac remodeling and dysfunction respectively. In addition, Rapamycin protected the H9C2 cells against oxygen glucose deprivation in vitro. Specifically, we found that Rapamycin attenuated NFκB activation after LAD ligation. And the inflammatory response in the acute stage of AMI was significantly restrained with Rapamycin treatment. In vitro, inhibition of NFκB restored autophagy in a negative reflex.Sustained myocardial ischemia impairs cardiomyocyte autophagy, which is an essential mechanism that protects against adverse cardiac remodeling. Augmenting autophagy could be a therapeutic strategy for acute myocardial infarction.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    05-1416
    Produktbezeichnung:
    Anti-CD45 Antibody, clone IBL-5/25
  • Effects of interaction of an early experience of reward through maternal contact or its denial with social stress during adolescence on the serotonergic system and the st ... 22381469

    Experiences during critical periods, such as the neonatal and adolescence, play a critical role in determining adult stress-coping behavior. Based on the aforementioned we developed an experimental protocol, which included a neonatal experience and a social stress during adolescence. The serotonergic system is known as an important modulator of coping ability and, in general, emotional balance in both normal and pathological states, such as depression and anxiety, for which females are more vulnerable. Thus in the present work we used female rats and determined 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and 5-hydroxytryptamine receptor type 1A (5-HT(1A)) receptor levels in the prefrontal cortex (PFC) and the amygdala (AMY). During postnatal days 10-13 (PND 10-13) rat pups were exposed to a T-maze, one arm of which lead to the mother. One group of animals was allowed contact with the mother (rewarded-receiving expected reward (RER)), whereas the other was denied the expected reward (DER). High performance liquid chromatography (HPLC) analysis revealed that in both the PFC and in AMY, adult RER animals had higher basal 5-HT levels. Furthermore, in the AMY of this group of animals, higher levels of 5-HT(1A) receptors were detected by Western blot analysis. In adulthood rats were exposed to the Forced Swimming Test/Stress (FST/S). RER animals not exposed to the adolescent stress exhibited longer immobility time during both the first and second day of FST. Corticosterone levels following the FST fell faster in the DER animals. Adolescent stress affected the responses to the adult FSS only in the DER animals, which had decreased 5-HT in the AMY and increased immobility time on both days of the FST, compared with the DER, not stressed in adolescence. The phenotype of the DER animals is in line with the match-mismatch hypothesis, which states that if two events during critical periods of life match in being mildly stressful, their interaction can be adaptive.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB9726
    Produktbezeichnung:
    Anti-Serotonin Transporter Antibody
  • The carboxyl-terminal region of erythroid-specific 5-aminolevulinate synthase acts as an intrinsic modifier for its catalytic activity and protein stability. 22269113

    Erythroid-specific 5-aminolevulinate synthase (ALAS2) is essential for hemoglobin production, and a loss-of-function mutation of ALAS2 gene causes X-linked sideroblastic anemia. Human ALAS2 protein consists of 587 amino acids and its carboxyl(C)-terminal region of 33 amino acids is conserved in higher eukaryotes, but is not present in prokaryotic ALAS. We explored the role of this C-terminal region in the pathogenesis of X-linked sideroblastic anemia. In vitro enzymatic activity was measured using bacterially expressed recombinant proteins. In vivo catalytic activity was evaluated by comparing the accumulation of porphyrins in eukaryotic cells stably expressing each mutant ALAS2 tagged with FLAG, and the half-life of each FLAG-tagged ALAS2 protein was determined by Western blot analysis. Two novel mutations (Val562Ala and Met567Ile) were identified in patients with X-linked sideroblastic anemia. Val562Ala showed the higher catalytic activity in vitro, but a shorter half-life in vivo compared to those of wild-type ALAS2 (WT). In contrast, the in vitro activity of Met567Ile mutant was about 25% of WT, while its half-life was longer than that of WT. However, in vivo catalytic activity of each mutant was lower than that of WT. In addition, the deletion of 33 amino acids at C-terminal end resulted in higher catalytic activity both in vitro and in vivo with the longer half-life compared to WT. In conclusion, the C-terminal region of ALAS2 protein may function as an intrinsic modifier that suppresses catalytic activity and increases the degradation of its protein, each function of which is enhanced by the Met567Ile mutation and the Val562Ala mutation, respectively.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB374
    Produktbezeichnung:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • Amino acid sequence requirements in the epitope recognized by the alpha-tubulin-specific rat monoclonal antibody YL 1/2. 6204858

    We have characterized the epitope of the rat monoclonal antibody YL 1/2 in detail using synthetic peptides and several alpha-tubulin derivatives. The epitope seems to be provided by the linear sequence spanning the carboxy-terminal residues of tyrosinated alpha-tubulin. By competitive ELISA, dipeptides covering the carboxyl end could be antigenically recognized. Three sites were deduced at the dipeptide level: a negatively charged side chain in the penultimate position followed by an aromatic residue which must carry the free carboxylate group. Experiments with longer peptides point to a further negative charge provided by a carboxylate group on the third residue from the end. Thus the tripeptide Glu-Glu-Tyr was only 5-fold less active than the octapeptide spanning the carboxy-terminal alpha-tubulin sequence. The octapeptide itself showed only a 40-fold lower activity than tyrosinated alpha-tubulin. In line with the emerging epitope requirements of YL 1/2, the Escherichia coli rec A protein, the catalytic subunit of the cyclic AMP-dependent muscle protein kinase as well as performic acid-oxidized actin were recognized by YL 1/2 in immunoblots. These results thus define the sequence requirements within a probably linear epitope and give rise to some general questions concerning experiments where monoclonal antibodies are microinjected into cells in order to assess the contribution of a known antigen to cellular physiology.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1864-I
    Produktbezeichnung:
    Anti-alpha-Tubulin Antibody, tyrosinated, clone YL1/2
  • Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. 21795443

    Ingestion of whey or casein yields divergent patterns of aminoacidemia that influence whole-body and skeletal muscle myofibrillar protein synthesis (MPS) after exercise. Direct comparisons of the effects of contrasting absorption rates exhibited by these proteins are confounded by their differing amino acid contents.Our objective was to determine the effect of divergent aminoacidemia by manipulating ingestion patterns of whey protein alone on MPS and anabolic signaling after resistance exercise.In separate trials, 8 healthy men consumed whey protein either as a single bolus (BOLUS; 25-g dose) or as repeated, small, "pulsed" drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic a more slowly digested protein. MPS and phosphorylation of signaling proteins involved in protein synthesis were measured at rest and after resistance exercise.BOLUS increased blood essential amino acid (EAA) concentrations above those of PULSE (162% compared with 53%, P less than 0.001) 60 min after exercise, whereas PULSE resulted in a smaller but sustained increase in aminoacidemia that remained elevated above BOLUS amounts later (180-220 min after exercise, P less than 0.05). Despite an identical net area under the EAA curve, MPS was elevated to a greater extent after BOLUS than after PULSE early (1-3 h: 95% compared with 42%) and later (3-5 h: 193% compared with 121%) (both P less than 0.05). There were greater changes in the phosphorylation of the Akt-mammalian target of rapamycin pathway after BOLUS than after PULSE.Rapid aminoacidemia in the postexercise period enhances MPS and anabolic signaling to a greater extent than an identical amount of protein fed in small pulses that mimic a more slowly digested protein. A pronounced peak aminoacidemia after exercise enhances protein synthesis. This trial was registered at clinicaltrials.gov as NCT01319513.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    05-988
    Produktbezeichnung:
    Anti-Pras40 Antibody, Clone 73P21
  • The amino acid sequence of rabbit J chain in secretory immunoglobulin A. 2123094

    The primary structure of rabbit J chain, which occurs covalently bound to secretory IgA, was determined. J chain was isolated in its S-carboxymethylated form, in one step, by SDS/PAGE followed by electro-elution; 5 nmol of protein (approx. 75 micrograms), in all, was necessary for the determination of the complete sequence by the 'shot-gun' microsquencing technique; with the use of several site-specific endoproteinases, the various digests of S-carboxymethylated J chain were separated by micro-bore reverse-phase h.p.l.c. and the partial N-terminal sequences of all peptides were analysed. From the sequence alignment, gaps were filled by further extensive sequencing of the relevant overlapping fragments isolated from selected digests. Rabbit J chain comprises 136 amino acid residues, out of which eight are conserved cysteine residues, and is more closely similar to the human sequence (73.5% identify) than to the mouse sequence (68% identity). There is one unique glycosylation site at asparagine-48.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    20-400
    Produktbezeichnung:
    Magna GrIP™ Rack (8 well)
  • Loss of the amino-terminal helix-loop-helix domain of the vav proto-oncogene activates its transforming potential. 2005887

    vav, a novel human oncogene, was originally generated in vitro by replacement of its normal 5' coding sequences with sequences from pSV2neo DNA, cotransfected as a selectable marker (S. Katzav, D. Martin-Zanca, and M. Barbacid, EMBO J. 8:2283-2290, 1989). The vav proto-oncogene is normally expressed in cells of hematopoietic origin. To determine whether the 5' rearrangement of vav or its ectopic expression in NIH 3T3 cells contributes to its transforming potential, we isolated murine and human proto-vav cDNA clones as well as human genomic clones corresponding to the 5' end of the gene. Normal proto-vav was poorly transforming in NIH 3T3 cells, whereas truncation of its 5' end greatly enhanced its transforming activity. The relative failure of full-length proto-vav cDNA clones to transform NIH 3T3 cells indicates that the transforming activity of vav is not simply due to ectopic expression. Analysis of the predicted amino terminus of the vav proto-oncogene shows that it contains a helix-loop-helix domain and a leucine zipper motif similar to that of myc family proteins, though it lacks a basic region that is usually found adjacent to helix-loop-helix domains. Loss of the helix-loop-helix domain of proto-vav, either by truncation or by rearrangement with pSV2neo sequences, activates its oncogenic potential.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    05-219
  • Isolation, partial amino acid sequence, and immunohistochemical localization of a brain-specific calcium-binding protein. 2602362

    A calcium-binding protein (protein 10) having a molecular mass of 29 kDa and an isoelectric point of 5.3 was purified from guinea pig brain. The amino acid sequence of fragments from proteolytic digestion of protein 10 revealed an 86% sequence identity with a calcium-binding protein (calretinin) found in chicken retina. Polyclonal antibodies against protein 10 revealed a specific distribution of this protein within sensory neurons of auditory, visual, olfactory, nociceptive, and gustatory systems as well as other discrete neuronal circuits in rat and guinea pig brain, whereas no specific label was observed in any of several peripheral tissues examined.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB1550
  • Novel nucleotide and amino acid covariation between the 5'UTR and the NS2/NS3 proteins of hepatitis C virus: bioinformatic and functional analyses. 21980483

    Molecular covariation of highly polymorphic viruses is thought to have crucial effects on viral replication and fitness. This study employs association rule data mining of hepatitis C virus (HCV) sequences to search for specific evolutionary covariation and then tests functional relevance on HCV replication. Data mining is performed between nucleotides in the untranslated regions 5' and 3'UTR, and the amino acid residues in the non-structural proteins NS2, NS3 and NS5B. Results indicate covariance of the 243(rd) nucleotide of the 5'UTR with the 14(th), 41(st), 76(th), 110(th), 211(th) and 212(th) residues of NS2 and with the 71(st), 175(th) and 621(st) residues of NS3. Real-time experiments using an HCV subgenomic system to quantify viral replication confirm replication regulation for each covariant pair between 5'UTR₂₄₃ and NS2-41, -76, -110, -211, and NS3-71, -175. The HCV subgenomic system with/without the NS2 region shows that regulatory effects vanish without NS2, so replicative modulation mediated by HCV 5'UTR₂₄₃ depends on NS2. Strong binding of the NS2 variants to HCV RNA correlates with reduced HCV replication whereas weak binding correlates with restoration of HCV replication efficiency, as determined by RNA-protein immunoprecipitation assay band intensity. The dominant haplotype 5'UTR₂₄₃-NS2-41-76-110-211-NS3-71-175 differs according to the HCV genotype: G-Ile-Ile-Ile-Gly-Ile-Met for genotype 1b and A-Leu-Val-Leu-Ser-Val-Leu for genotypes 1a, 2a and 2b. In conclusion, 5'UTR₂₄₃ co-varies with specific NS2/3 protein amino acid residues, which may have significant structural and functional consequences for HCV replication. This unreported mechanism involving HCV replication possibly can be exploited in the development of advanced anti-HCV medication.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1501
    Produktbezeichnung:
    Anti-Actin Antibody, clone C4