Millipore Sigma Vibrant Logo
 

prolactin


125 Results Erweiterte Suche  
Suchergebnisse

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (110)
  • (10)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Integration of prolactin and glucocorticoid signaling at the beta-casein promoter and enhancer by ordered recruitment of specific transcription factors and chromatin modi ... 16772529

    Lactogenic hormone regulation of beta-casein gene expression in mammary epithelial cells provides an excellent system in which to perform kinetic studies of chromatin remodeling and transcriptional activation. Using HC11 cells as a model, we have investigated the effects of prolactin (Prl) and glucocorticoids both singly and in combination at different time points after hormone treatment. Using chromatin immunoprecipitation analysis, we have determined the dynamics of assembly and disassembly of signal transducer and activator of transcription 5, glucocorticoid receptor, CCAAT enhancer binding protein beta, and Ying Yang-1 at the hormonally activated beta-casein proximal promoter as well as the distal mouse beta-casein enhancer located approximately -6 kb upstream of the transcription start site. Prl alone resulted in a rapid recruitment of both signal transducer and activator of transcription 5 and histone deacetylase 1 to the beta-casein promoter and enhancer, and reciprocally the dissociation of Ying Yang-1 from the proximal promoter. In addition, we have examined the recruitment of coactivator p300 and determined chromatin acetylation status as a function of hormonal treatment. Finally, we have established the time course of RNA polymerase II and phospho-RNA polymerase II accumulation at the beta-casein promoter and enhancer after stimulation with hydrocortisone and Prl. Although glucocorticoids alone led to a rapid increase in histone H3 acetylation, treatment with both hormones was required for stable association of p300 and phospho-RNA polymerase II at both the promoter and enhancer. Collectively, these data suggest a model for the assembly of a multiprotein complex that helps to define how the signaling pathways controlled by these lactogenic hormones are integrated to regulate beta-casein gene expression.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Prolactin potentiates insulin-stimulated leptin expression and release from differentiated brown adipocytes. 15591027

    The pituitary hormone prolactin (PRL) exerts pleiotropic effects, which are mediated by a membrane receptor (PRLR) present in numerous cell types including adipocytes. Brown adipose tissue (BAT) expresses uncoupling proteins (UCPs), involved in thermogenesis, but also secretes leptin, a key hormone involved in the control of body weight. To investigate PRL effects on BAT, we used the T37i brown adipose cell line, and demonstrated that PRLRs are expressed as a function of cell differentiation. Addition of PRL leads to activation of the JAK/STAT and MAP kinase signaling pathways, demonstrating that PRLRs are functional in these cells. Basal and catecholamine-induced UCP1 expression were not affected by PRL. However, PRL combined with insulin significantly increases leptin expression and release, indicating that PRL potentiates the stimulatory effect of insulin as revealed by the recruitment of insulin receptor substrates and the activation of phosphatidylinositol 3-kinase. To explore the in vivo physiological relevance of PRL action in BAT, we showed that leptin content was significantly increased in BAT of PRLR-null mice compared with wild-type mice, highlighting the involvement of PRL in the leptin secretion process. This study provides the first evidence for a functional link between PRL and energy balance via a cross-talk between insulin and PRL signaling pathways in brown adipocytes.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-255
    Produktbezeichnung:
    Anti-JAK2 Antibody
  • Prolactin stimulates serine/tyrosine phosphorylation and formation of heterocomplexes of multiple Stat5 isoforms in Nb2 lymphocytes. 9162035

    Transcription factors of the Stat gene family are selectively activated by many hormones and cytokines. Stat5 originally was cloned as a prolactin-stimulated DNA-binding protein, but is also activated by non-lactogenic cytokines in many cell types. The recent identification of two distinct Stat5 genes, which encode a 94-kDa Stat5a and a 92-kDa Stat5b as well as several lower molecular weight isoforms, suggests additional complexity and combinatorial possibilities for transcriptional regulation. We now report a biochemical analysis of prolactin activation of Stat proteins in Nb2 lymphocytes, which was associated with: 1) rapid tyrosine phosphorylation of Stat5a, Stat5b, a COOH-terminally truncated 80-kDa Stat5 form, Stat1alpha, and Stat3; 2) rapid and selective formation of Stat5a/b heterodimers, without involvement of Stat1alpha or Stat3; 3) marked serine, but not threonine phosphorylation of Stat5a and Stat5b; and 4) the appearance of two qualitatively distinct Stat5 protein complexes, which discriminated between oligonucleotides corresponding to the prolactin response elements of the beta-casein and interferon regulatory factor-1 gene promoters. Collectively, our analyses showed that Stat5a and Stat5b respond similarly to prolactin receptor activation, but also suggested that the two genes have evolved unique properties that may contribute to the specificity of receptors that utilize Stat5 signaling proteins.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Prolactin receptor in regulation of neuronal excitability and channels. 24758841

    Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca(2+) influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca(2+) -dependent K(+) channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB377
    Produktbezeichnung:
    Anti-NeuN Antibody, clone A60
  • Prolactin enhances insulin-like growth factor I receptor phosphorylation by decreasing its association with the tyrosine phosphatase SHP-2 in MCF-7 breast cancer cells. 20080972

    Normal mammary development requires coordinated interactions of numerous factors, including prolactin (PRL) and insulin-like growth factor I (IGF-I), both of which have also been implicated in breast cancer pathogenesis and progression. We previously reported that PRL and IGF-I synergize in breast cancer cells to activate ERK1/2 and AKT, leading to increased proliferation, survival, and invasion. Intriguingly, PRL co-treatment with IGF-I augments IGF-I receptor (IGF-IR) phosphorylation 2-fold higher than IGF-I alone. Here, we showed the importance of the tyrosine phosphatase SHP-2 in this cross-talk using pharmacological inhibition and small interfering RNA. SHP-2 recruitment to IGF-IR was significantly attenuated by PRL co-treatment. Src family kinase activity was required for IGF-IR association with SHP-2, ligand-induced IGF-IR internalization, and PRL-enhanced IGF-IR phosphorylation. Inhibition of internalization, via knockdown of the GTPase, dynamin-2, prevented not only IGF-IR dephosphorylation, but also PRL-enhanced IGF-IR phosphorylation. Consistently, PRL diminished IGF-I-induced IGF-IR internalization, which may result from reduced SHP-2 association with IGF-IR, because we demonstrated an essential role for SHP-2 in IGF-IR internalization. Together, these findings describe a novel mechanism of cross-talk between PRL and IGF-I in breast cancer cells, with implications for our understanding of tumor progression and potential therapeutic strategies.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-118
  • Prolactin in ovarian follicular fluid stimulates endothelial cell proliferation. 19672107

    Angiogenesis is essential for the growth and maturation of the ovarian follicle and its transition into the corpus luteum. In addition to the main proangiogenic factors, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), follicular fluid (FF) contains the hormone prolactin (PRL), which is known to promote angiogenesis in vivo. Here, we show that FF from large follicles, which contains twice the PRL level of FF from small follicles, stimulates endothelial cell proliferation to a greater extent than the latter, and that immunoneutralization of PRL prevents FF from stimulating endothelial cell proliferation. Notably, the FF increases the expression of the short and long PRL receptor isoforms in endothelial cells, and a purified PRL standard stimulates endothelial cell proliferation but only after the cells have been pretreated with FF. However, purified PRL activates the JAK2/STAT3 pathway in endothelial cells in the absence of pretreatment with FF. In summary, PRL present in the FF stimulates the proliferation of endothelial cells. This effect likely involves the upregulation of the short and long PRL receptor isoforms and is independent of PRL-induced JAK2/STAT3 signaling.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-255
    Produktbezeichnung:
    Anti-JAK2 Antibody
  • Prolactin promotes cartilage survival and attenuates inflammation in inflammatory arthritis. 23908112

    Chondrocytes are the only cells in cartilage, and their death by apoptosis contributes to cartilage loss in inflammatory joint diseases, such as rheumatoid arthritis (RA). A putative therapeutic intervention for RA is the inhibition of apoptosis-mediated cartilage degradation. The hormone prolactin (PRL) frequently increases in the circulation of patients with RA, but the role of hyperprolactinemia in disease activity is unclear. Here, we demonstrate that PRL inhibits the apoptosis of cultured chondrocytes in response to a mixture of proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ) by preventing the induction of p53 and decreasing the BAX/BCL-2 ratio through a NO-independent, JAK2/STAT3-dependent pathway. Local treatment with PRL or increasing PRL circulating levels also prevented chondrocyte apoptosis evoked by injecting cytokines into the knee joints of rats, whereas the proapoptotic effect of cytokines was enhanced in PRL receptor-null (Prlr(-/-)) mice. Moreover, eliciting hyperprolactinemia in rats before or after inducing the adjuvant model of inflammatory arthritis reduced chondrocyte apoptosis, proinflammatory cytokine expression, pannus formation, bone erosion, joint swelling, and pain. These results reveal the protective effect of PRL against inflammation-induced chondrocyte apoptosis and the therapeutic potential of hyperprolactinemia to reduce permanent joint damage and inflammation in RA.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-573
    Produktbezeichnung:
    Anti-iNOS/NOS II Antibody, NT
  • Prolactin suppresses malonyl-CoA concentration in human adipose tissue. 19551610

    Prolactin is best known for its involvement in lactation, where it regulates mechanisms that supply nutrients for milk production. In individuals with pathological hyperprolactinemia, glucose and fat homeostasis have been reported to be negatively influenced. It is not previously known, however, whether prolactin regulates lipogenesis in human adipose tissue. The aim of this study was to investigate the effect of prolactin on lipogenesis in human adipose tissue in vitro. Prolactin decreased the concentration of malonyl-CoA, the product of the first committed step in lipogenesis, to 77+/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue as a consequence of suppressed malonyl-CoA concentration in parallel with decreased GLUT-4 expression. In the lactating woman, this regulation in adipose tissue may enhance the provision of nutrients for the infant instead of nutrients being stored in adipose tissue. In hyperprolactinemic individuals, a suppressed lipogenesis could contribute to an insulin resistant state with consequences for the health.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-303
    Produktbezeichnung:
    Anti-phospho-Acetyl CoA Carboxylase (Ser79) Antibody
  • Prolactin and ErbB4/HER4 signaling interact via Janus kinase 2 to induce mammary epithelial cell gene expression differentiation. 18653779

    Differentiation of mammary epithelium in vivo requires signaling through prolactin and ErbB4/HER4-dependent mechanisms. Although stimulation of either the prolactin receptor or ErbB4/HER4 results in activation of the transcription factor signal transducer and activator of transcription 5A (STAT5A) and induction of lactogenic differentiation, how these pathways intersect is unknown. We show herein that prolactin signaling in breast cells cooperates with and is substantially enhanced by the receptor tyrosine kinase ErbB4/HER4. Prolactin and the ErbB4/HER4 ligand heparin-binding epidermal growth factor each induced STAT5A tyrosine phosphorylation and nuclear translocation; each pathway required the intracellular tyrosine kinase Janus kinase 2 (JAK2). We found that full prolactin-mediated STAT5A activation and binding to the endogenous beta-casein promoter required ErbB4/HER4 but did not require ErbB1/epidermal growth factor receptor. For example, prolactin-induced STAT5A activity was markedly diminished in cells overexpressing kinase inactive HER4, in cells transfected with small interfering RNAs to specifically knock down endogenous ErbB4/HER4 expression and in cells treated with a small molecule inhibitor that targets ErbB4 kinase. Interestingly, prolactin caused ErbB4/HER4 tyrosine phosphorylation in a JAK2 kinase-dependent manner. Finally, prolactin receptor, ErbB4/HER4, and JAK2 were coimmunoprecipitated from prolactin-treated but not untreated cells. These results suggest that prolactin signaling engages the ErbB4 pathway via JAK2 and that ErbB4 provides an important component of STAT5A-dependent lactogenic differentiation; this pathway integration may help explain the similar deficit in mammary development observed in gene-targeted mice deficient in prolactin receptor, JAK2, ErbB4, or STAT5A.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    64-101
    Produktbezeichnung:
    siIMPORTER™
  • Prolactin drives estrogen receptor-alpha-dependent ductal expansion and synergizes with transforming growth factor-alpha to induce mammary tumors in males. 18156207

    Male breast cancer is rare and has been the focus of limited research. Although the etiology is unclear, conditions increasing circulating prolactin (PRL), as well as estrogen, increase the risk of tumorigenesis. We modeled exposure to elevated PRL in transgenic mice, using the mammary-selective, estrogen-insensitive promoter neu-related lipocalin (NRL), to drive PRL expression. Male NRL-PRL mice did not develop mammary tumors. However, in cooperation with the well-characterized oncogene transforming growth factor-alpha (TGF-alpha), PRL induced mammary tumors in 100% of male bitransgenic mice. Similar to disease in human males, these tumors expressed variable levels of estrogen receptor-alpha (ER-alpha) and androgen receptors. However, carcinogenesis was not responsive to testicular steroids because castration did not alter latency to tumor development or tumor ER-alpha expression. Interestingly, both NRL-TGF-alpha/PRL and NRL-PRL males demonstrated increased ductal development, which occurred during puberty, similar to female mice. This outgrowth was diminished in NRL-PRL males treated with ICI 182,780, suggesting that PRL enhances ER-mediated growth. Treatment of MCF-7-derived cells with PRL increased phosphorylation of ER-alpha at residues implicated in unliganded ER-alpha activity. Together, these studies suggest that PRL expands the pool of cells susceptible to tumorigenesis, which is then facilitated by PRL and TGF-alpha cross talk. Activation of ER-alpha is one mechanism by which PRL may contribute to breast cancer and points to other therapeutic strategies for male patients.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-481