Millipore Sigma Vibrant Logo
 

tits


4617 Results Erweiterte Suche  
Suchergebnisse
Dokumente (4.543)

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (4.542)
  • (1)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model. 19541928

    Non-alcoholic fatty liver disease (NAFLD), which includes steatosis and its progression to non-alcoholic steatohepatitis, is a liver disorder of increasing clinical significance. Here we characterize a murine model of high fat diet-induced NAFLD with progression from liver steatosis to histological features compatible with steatohepatitis and more advanced stages of NAFLD in humans, including chronic portal inflammation, pericellular and bridging fibrosis, Mallory body formation, and bile ductular reaction. Chronic changes induced by the prolonged consumption of a high-fat diet alone culminate in the development of primary liver dysplasias. Importantly, we extend these studies to demonstrate that even the early stages of uncomplicated steatosis provide a permissive microenvironment for the growth of colon cancer cells that are metastatic to the liver. High fat diet-induced steatosis, coupled with a splenic injection model of experimental liver metastasis using syngeneic MC38 colon cancer cells, resulted in an increased number of secondary tumor nodules and metastatic burden in steatotic livers. Metastatic nodules were associated with focal peritumoral areas of infiltrating inflammatory cells and associated apoptotic cell populations. These results suggest that the modulation of specific host factors in the steatotic liver contributes to tumor progression in the microenvironment of NAFLD.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-570
    Produktbezeichnung:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alo ... 19878616

    Dietary protein restriction is one major therapy in chronic kidney disease (CKD), and ketoacids have been evaluated in CKD patients during restricted-protein diets. The objective of the present study was to compare the efficacy of a low-protein diet supplemented with ketoacids (LPD+KA) and a low-protein diet alone (LPD) in halting the development of renal lesions in CKD. 5/6 Nephrectomy Sprague-Dawley rats were randomly divided into three groups, and fed with either 22 % protein (normal-protein diet; NPD), 6 % protein (LPD) or 5 % protein plus 1 % ketoacids (LPD+KA) for 24 weeks. Sham-operated rats were used as controls. Each 5/6 nephrectomy group included fifteen rats and the control group included twelve rats. Proteinuria, decreased renal function, glomerular sclerosis and tubulointerstitial fibrosis were found in the remnant kidneys of the NPD group. Protein restriction ameliorated these changes, and the effect was more obvious in the LPD+KA group after 5/6 nephrectomy. Lower body weight and serum albumin levels were found in the LPD group, indicating protein malnutrition. Lipid and protein oxidative products were significantly increased in the LPD group compared with the LPD+KA group. These findings indicate that a LPD supplemented with ketoacids is more effective than a LPD alone in protecting the function of remnant kidneys from progressive injury, which may be mediated by ketoacids ameliorating protein malnutrition and oxidative stress injury in remnant kidney tissue.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    09-162
    Produktbezeichnung:
    Anti-Wnt3A Antibody
  • High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes. 23548599

    Astrocytes respond to multiple forms of central nervous system (CNS) injury by entering a reactive state characterized by morphological changes and a specific pattern of altered protein expression. Termed astrogliosis, this response has been shown to strongly influence the injury response and functional recovery of CNS tissues. This pattern of CNS inflammation and injury associated with astrogliosis has recently been found to occur in the energy homeostasis centers of the hypothalamus during diet-induced obesity (DIO) in rodent models, but the characterization of the astrocyte response remains incomplete. Here, we report that astrocytes in the mediobasal hypothalamus respond robustly and rapidly to purified high-fat diet (HFD) feeding by cleaving caspase-3, a protease whose cleavage is often associated with apoptosis. Although obesity develops in HFD-fed rats by day 14, caspase-3 cleavage occurs by day 3, prior to the development of obesity, suggesting the possibility that it could play a causal role in the hypothalamic neuropathology and fat gain observed in DIO. Caspase-3 cleavage is not associated with an increase in the rate of apoptosis, as determined by TUNEL staining, suggesting it plays a non-apoptotic role analogous to the response to excitotoxic neuron injury. Our results indicate that astrocytes in the mediobasal hypothalamus respond rapidly and robustly to HFD feeding, activating caspase-3 in the absence of apoptosis, a process that has the potential to influence the course of DIO.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB377
    Produktbezeichnung:
    Anti-NeuN Antibody, clone A60
  • High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. 23152876

    Maternal obesity is associated with poor outcomes across the reproductive spectrum including infertility, increased time to pregnancy, early pregnancy loss, fetal loss, congenital abnormalities and neonatal conditions. Furthermore, the proportion of reproductive-aged woman that are obese in the population is increasing sharply. From current studies it is not clear if the origin of the reproductive complications is attributable to problems that arise in the oocyte or the uterine environment.We examined the developmental basis of the reproductive phenotypes in obese animals by employing a high fat diet mouse model of obesity. We analyzed very early embryonic and fetal phenotypes, which can be parsed into three abnormal developmental processes that occur in obese mothers. The first is oocyte meiotic aneuploidy that then leads to early embryonic loss. The second is an abnormal process distinct from meiotic aneuploidy that also leads to early embryonic loss. The third is fetal growth retardation and brain developmental abnormalities, which based on embryo transfer experiments are not due to the obese uterine environment but instead must be from a defect that arises prior to the blastocyst stage.Our results suggest that reproductive complications in obese females are, at least in part, from oocyte maternal effects. This conclusion is consistent with IVF studies where the increased pregnancy failure rate in obese women returns to the normal rate if donor oocytes are used instead of autologous oocytes. We postulate that preconceptional weight gain adversely affects pregnancy outcomes and fetal development. In light of our findings, preconceptional counseling may be indicated as the preferable, earlier target for intervention in obese women desiring pregnancy and healthy outcomes.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB3242
    Produktbezeichnung:
    Anti-PGC-1 Antibody
  • High-fat diet feeding elevates skeletal muscle uncoupling protein 3 levels but not its activity in rats. 11346673

    OBJECTIVE: The objective of this study is to test the impact of high-fat diet (HFD) feeding on skeletal muscle (SM) uncoupling protein 3 (UCP3) expression and its association with mitochondrial ion permeability and whole-body energy homeostasis. RESEARCH METHODS AND PROCEDURES: Sprague-Dawley rats were fed ad libitum either a HFD (60% of energy from fat, n = 6) or a low-fat diet (12% of energy from fat, n = 6) for 4 weeks. Twenty-four-hour energy expenditure was measured by indirect calorimetry in the last week of the dietary treatment. Blood samples were collected for plasma leptin and free fatty acid assays, and mitochondria were isolated from hindlimb SM for subsequent determinations of UCP3 levels and mitochondrial ion permeability. RESULTS: Plasma leptin levels were higher in rats fed the HFD despite the same body weight in two groups. The same dietary treatment also rendered a 2-fold increase in plasma free fatty acid and SM UCP3 protein levels (Western blot) compared with the group fed the low-fat diet. However, the elevated UCP3 protein levels did not correlate with mitochondrial swelling rates, a measure of mitochondrial chloride, and proton permeability, or with 24-hour energy expenditure. DISCUSSION: The high correlation between the levels of plasma free fatty acid levels and SM UCP3 suggests that circulating free fatty acid may play an important role in UCP3 expression during the HFD feeding. However, the dissociation between the UCP3 protein levels and 24-hour energy expenditure as well as mitochondrial ion permeability suggests that mitochondrial proton leak mediated by muscle UCP3 may not be a major contributor in energy balance in HFD feeding, and other regulatory mechanisms independent of gene regulation may be responsible for the control of UCP3-mediated uncoupling activity.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB3046
    Produktbezeichnung:
    Anti-Uncoupling Protein 3 Antibody
  • Fructose diet treatment in mice induces fundamental disturbance of cardiomyocyte Ca2+ handling and myofilament responsiveness. 22198170

    High fructose intake has been linked to insulin resistance and cardiac pathology. Dietary fructose-induced myocardial signaling and morphological alterations have been described, but whether cardiomyocyte function is influenced by chronic high fructose intake is yet to be elucidated. The goal of this study was to evaluate the cardiomyocyte excitation-contraction coupling effects of high dietary fructose and determine the capacity for murine cardiomyocyte fructose transport. Male C57Bl/6J mice were fed a high fructose diet for 12 wk. Fructose- and control-fed mouse cardiomyocytes were isolated and loaded with the fura 2 Ca(2+) fluorescent dye for analysis of twitch and Ca(2+) transient characteristics (4 Hz stimulation, 37°C, 2 mM Ca(2+)). Myocardial Ca(2+)-handling protein expression was determined by Western blot. Gene expression of the fructose-specific transporter, GLUT5, in adult mouse cardiomyocytes was detected by real-time and conventional RT-PCR techniques. Diastolic Ca(2+) and Ca(2+) transient amplitude were decreased in isolated cardiomyocytes from fructose-fed mice relative to control (16 and 42%, respectively), coincident with an increase in the time constant of Ca(2+) transient decay (24%). Dietary fructose increased the myofilament response to Ca(2+) (as evidenced by a left shift in the shortening-Ca(2+) phase loop). Protein expression of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a), phosphorylated (P) phospholamban (Ser(16)), and P-phospholamban (Thr(17)) was reduced, and protein phosphatase 2A expression increased, in fructose-fed mouse hearts. Hypertension and cardiac hypertrophy were not evident. These findings demonstrate that fructose diet-associated myocardial insulin resistance induces profound disturbance of cardiomyocyte Ca(2+) handling and responsiveness in the absence of altered systemic loading conditions.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. 20808947

    Obesity induced by high fat (HF) diet is associated with inflammation which contributes to development of insulin resistance. Most prior studies have focused on adipose tissue as the source of obesity-associated inflammation. Increasing evidence links intestinal bacteria to development of diet-induced obesity (DIO). This study tested the hypothesis that HF western diet and gut bacteria interact to promote intestinal inflammation, which contributes to the progression of obesity and insulin resistance.Conventionally raised specific-pathogen free (CONV) and germ-free (GF) mice were given HF or low fat (LF) diet for 2-16 weeks. Body weight and adiposity were measured. Intestinal inflammation was assessed by evaluation of TNF-alpha mRNA and activation of a NF-kappaB(EGFP) reporter gene. In CONV but not GF mice, HF diet induced increases in body weight and adiposity. HF diet induced ileal TNF-alpha mRNA in CONV but not GF mice and this increase preceded obesity and strongly and significantly correlated with diet induced weight gain, adiposity, plasma insulin and glucose. In CONV mice HF diet also resulted in activation of NF-kappaB(EGFP) in epithelial cells, immune cells and endothelial cells of small intestine. Further experiments demonstrated that fecal slurries from CONV mice fed HF diet are sufficient to activate NF-kappaB(EGFP) in GF NF-kappaB(EGFP) mice.Bacteria and HF diet interact to promote proinflammatory changes in the small intestine, which precede weight gain and obesity and show strong and significant associations with progression of obesity and development of insulin resistance. To our knowledge, this is the first evidence that intestinal inflammation is an early consequence of HF diet which may contribute to obesity and associated insulin resistance. Interventions which limit intestinal inflammation induced by HF diet and bacteria may protect against obesity and insulin resistance.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB356
    Produktbezeichnung:
    Anti-Substance P Antibody, pain, clone NC1
  • Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. 23144842

    Males and females responses to gestational overnutrition set the stage for subsequent sex-specific differences in adult onset non communicable diseases. Placenta, as a widely recognized programming agent, contibutes to the underlying processes. According to our previous findings, a high-fat diet during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes. We further investigated the impact of diet and sex on placental histology, transcriptomic and epigenetic signatures in mice. Both basal gene expression and response to maternal high-fat diet were sexually dimorphic in whole placentas. Numerous genes showed sexually dimorphic expression, but only 11 genes regardless of the diet. In line with the key role of genes belonging to the sex chromosomes, 3 of these genes were Y-specific and 3 were X-specific. Amongst all the genes that were differentially expressed under a high-fat diet, only 16 genes were consistently affected in both males and females. The differences were not only quantitative but remarkably qualitative. The biological functions and networks of genes dysregulated differed markedly between the sexes. Seven genes of the epigenetic machinery were dysregulated, due to effects of diet, sex or both, including the Y- and X-linked histone demethylase paralogues Kdm5c and Kdm5d, which could mark differently male and female epigenomes. The DNA methyltransferase cofactor Dnmt3l gene expression was affected, reminiscent of our previous observation of changes in global DNA methylation. Overall, this striking sexual dimorphism of programming trajectories impose a considerable revision of the current dietary interventions protocols.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. 26023930

    High-fat diet (HFD)-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group) or a HFD (60% of calorie from fat; HFD group) for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a) a significant decrease of insulin receptor substrate (IRS-1) phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b) these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c) primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment); this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a) an inactivation of the IRS-1 and, consequentially, (b) a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c) a suppression of the ERK/CREB pathway, and (d) a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity). It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts profoundly on brain activity, i.e., synaptic plasticity.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    09-432
    Produktbezeichnung:
    Anti-phospho-IRS1 (Tyr608) mouse/ (Tyr612) human Antibody
  • Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. 23743570

    Ketogenic diets are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to normal cells) are believed to exist in a state of chronic oxidative stress mediated by mitochondrial metabolism. The current study tests the hypothesis that ketogenic diets enhance radio-chemo-therapy responses in lung cancer xenografts by enhancing oxidative stress.Mice bearing NCI-H292 and A549 lung cancer xenografts were fed a ketogenic diet (KetoCal 4:1 fats: proteins+carbohydrates) and treated with either conventionally fractionated (1.8-2 Gy) or hypofractionated (6 Gy) radiation as well as conventionally fractionated radiation combined with carboplatin. Mice weights and tumor size were monitored. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modified proteins as a marker of oxidative stress as well as proliferating cell nuclear antigen (PCNA) and γH2AX as indices of proliferation and DNA damage, respectively.The ketogenic diets combined with radiation resulted in slower tumor growth in both NCI-H292 and A549 xenografts (P less than 0.05), relative to radiation alone. The ketogenic diet also slowed tumor growth when combined with carboplatin and radiation, relative to control. Tumors from animals fed a ketogenic diet in combination with radiation showed increases in oxidative damage mediated by lipid peroxidation as determined by 4HNE-modified proteins as well as decreased proliferation as assessed by decreased immunoreactive PCNA.These results show that a ketogenic diet enhances radio-chemo-therapy responses in lung cancer xenografts by a mechanism that may involve increased oxidative stress.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-164
    Produktbezeichnung:
    Anti-phospho-H2A.X (Ser139) Antibody