Millipore Sigma Vibrant Logo
 

virus


4228 Results Erweiterte Suche  
Suchergebnisse

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (1.847)
  • (1.768)
  • (31)
  • (26)
  • (22)
  • Mehr anzeigen
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Measles virus nucleocapsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. 17217427

    In measles virus (MV)-infected cells the matrix (M) protein plays a key role in virus assembly and budding processes at the plasma membrane because it mediates the contact between the viral surface glycoproteins and the nucleocapsids. By exchanging valine 101, a highly conserved residue among all paramyxoviral M proteins, we generated a recombinant MV (rMV) from cloned cDNA encoding for a M protein with an increased intracellular turnover. The mutant rMV was barely released from the infected cells. This assembly defect was not due to a defective M binding to other matrix- or nucleoproteins, but could rather be assigned to a reduced ability to associate with cellular membranes, and more importantly, to a defective accumulation at the plasma membrane which was accompanied by the deficient transport of nucleocapsids to the cell surface. Thus, we show for the first time that M stability and accumulation at intracellular membranes is a prerequisite for M and nucleocapsid co-transport to the plasma membrane and for subsequent virus assembly and budding processes.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB8910
    Produktbezeichnung:
    Anti-Measles Blend Antibody, matrix protein, clones CV8, CV9
  • Andes virus recognition of human and Syrian hamster beta3 integrins is determined by an L33P substitution in the PSI domain. 19846530

    Andes virus (ANDV) causes a fatal hantavirus pulmonary syndrome (HPS) in humans and Syrian hamsters. Human alpha(v)beta(3) integrins are receptors for several pathogenic hantaviruses, and the function of alpha(v)beta(3) integrins on endothelial cells suggests a role for alpha(v)beta(3) in hantavirus directed vascular permeability. We determined here that ANDV infection of human endothelial cells or Syrian hamster-derived BHK-21 cells was selectively inhibited by the high-affinity alpha(v)beta(3) integrin ligand vitronectin and by antibodies to alpha(v)beta(3) integrins. Further, antibodies to the beta(3) integrin PSI domain, as well as PSI domain polypeptides derived from human and Syrian hamster beta(3) subunits, but not murine or bovine beta(3), inhibited ANDV infection of both BHK-21 and human endothelial cells. These findings suggest that ANDV interacts with beta(3) subunits through PSI domain residues conserved in both Syrian hamster and human beta(3) integrins. Sequencing the Syrian hamster beta(3) integrin PSI domain revealed eight differences between Syrian hamster and human beta(3) integrins. Analysis of residues within the PSI domains of human, Syrian hamster, murine, and bovine beta(3) integrins identified unique proline substitutions at residues 32 and 33 of murine and bovine PSI domains that could determine ANDV recognition. Mutagenizing the human beta(3) PSI domain to contain the L33P substitution present in bovine beta(3) integrin abolished the ability of the PSI domain to inhibit ANDV infectivity. Conversely, mutagenizing either the bovine PSI domain, P33L, or the murine PSI domain, S32P, to the residue present human beta(3) permitted PSI mutants to inhibit ANDV infection. Similarly, CHO cells transfected with the full-length bovine beta(3) integrin containing the P33L mutation permitted infection by ANDV. These findings indicate that human and Syrian hamster alpha(v)beta(3) integrins are key receptors for ANDV and that specific residues within the beta(3) integrin PSI domain are required for ANDV infection. Since L33P is a naturally occurring human beta(3) polymorphism, these findings further suggest the importance of specific beta(3) integrin residues in hantavirus infection. These findings rationalize determining the role of beta(3) integrins in hantavirus pathogenesis in the Syrian hamster model.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1962
    Produktbezeichnung:
    Anti-Integrin β2 Antibody, clone P4H9
  • Measles virus selectively blind to signaling lymphocytic activation molecule (SLAM; CD150) is attenuated and induces strong adaptive immune responses in rhesus monkeys. 20071568

    The signaling lymphocytic activation molecule (SLAM; CD150) is the immune cell receptor for measles virus (MV). To assess the importance of the SLAM-MV interactions for virus spread and pathogenesis, we generated a wild-type IC-B MV selectively unable to recognize human SLAM (SLAM-blind). This virus differs from the fully virulent wild-type IC-B strain by a single arginine-to-alanine substitution at amino acid 533 of the attachment protein hemagglutinin and infects cells through SLAM about 40 times less efficiently than the isogenic wild-type strain. Ex vivo, this virus infects primary lymphocytes at low levels regardless of SLAM expression. When a group of six rhesus monkeys (Macaca mulatta) was inoculated intranasally with the SLAM-blind virus, no clinical symptoms were documented. Only one monkey had low-level viremia early after infection, whereas all the hosts in the control group had high viremia levels. Despite minimal, if any, viremia, all six hosts generated neutralizing antibody titers close to those of the control monkeys while MV-directed cellular immunity reached levels at least as high as in wild-type-infected monkeys. These findings prove formally that efficient SLAM recognition is necessary for MV virulence and pathogenesis. They also suggest that the selectively SLAM-blind wild-type MV can be developed into a vaccine vector., idnum { R01 AI063476/AI/NIAID NIH HHS
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB8905
    Produktbezeichnung:
    Anti-Measles Blend Antibody, hemagglutinin, clones CV1, CV4
  • Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. 8065321

    We report that the small tumor (small-t) antigen of simian virus 40 (SV40) forms complexes with nuclear protein phosphatase 2A (PP2A) and regulates the phosphorylation and transcriptional transactivation function of the cyclic AMP (cAMP)-regulatory element binding protein (CREB). PP2A coimmunoprecipitated with small t from nuclear extracts from HepG2 cells expressing small t or from rat liver nuclear extracts to which recombinant small t was added. Protein phosphatase 1 was not detected in small-t immunoprecipitates. In HepG2 cells expressing small t, dibutyryl-cAMP (Bt2cAMP) stimulated the phosphorylation of CREB 65-fold, whereas CREB phosphorylation was stimulated only 5- to 8-fold by Bt2cAMP in cells not expressing small t. Small t also inhibited the dephosphorylation of cAMP-dependent protein kinase (PKA)-phosphorylated CREB in rat liver nuclear extracts. In cells expressing small t, Bt2cAMP-stimulated transcription from the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter was enhanced over the level of transcription from the PEPCK promoter in cells not expressing small t. Small t also enhanced Bt2cAMP-stimulated transcription from a Gal4-responsive promoter in cells expressing a chimeric protein containing the Gal4 DNA-binding domain linked to the CREB transactivation domain. However, small t did not stimulate transcription either from a 5' deletion mutant of the PEPCK promoter that is not able to bind CREB or from the Gal4-responsive promoter in the absence of the Gal4-CREB protein. These data suggest that small t enhances Bt2cAMP-stimulated gene transcription by inhibiting the dephosphorylation of PKA-phosphorylated CREB by nuclear PP2A. These findings support previous observations that nuclear PP2A is the primary phosphatase that dephosphorylates PKA-phosphorylated CREB.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    19-130
    Produktbezeichnung:
    Okadaic Acid (sodium salt)
  • Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. 12388709

    Characterization of recent outbreaks of fatal encephalitis in southeast Asia identified the causative agent to be a previously unrecognized enveloped negative-strand RNA virus of the Paramyxoviridae family, Nipah virus. One feature linking Nipah virus to this family is a conserved cysteine-rich domain that is the hallmark of paramyxovirus V proteins. The V proteins of other paramyxovirus species have been linked with evasion of host cell interferon (IFN) signal transduction and subsequent antiviral responses by inducing proteasomal degradation of the IFN-responsive transcription factors, STAT1 or STAT2. Here we demonstrate that Nipah virus V protein escapes IFN by a distinct mechanism involving direct inhibition of STAT protein function. Nipah virus V protein differs from other paramyxovirus V proteins in its subcellular distribution but not in its ability to inhibit cellular IFN responses. Nipah virus V protein does not induce STAT degradation but instead inhibits IFN responses by forming high-molecular-weight complexes with both STAT1 and STAT2. We demonstrate that Nipah virus V protein accumulates in the cytoplasm by a Crm1-dependent mechanism, alters the STAT protein subcellular distribution in the steady state, and prevents IFN-stimulated STAT redistribution. Consistent with the formation of complexes, STAT protein tyrosine phosphorylation is inhibited in cells expressing the Nipah virus V protein. As a result, Nipah virus V protein efficiently prevents STAT1 and STAT2 nuclear translocation in response to IFN, inhibiting cellular responses to both IFN-alpha and IFN-gamma.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-501
    Produktbezeichnung:
    Anti-STAT1 Antibody, CT
  • Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression. 25779048

    Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB8184
    Produktbezeichnung:
    Anti-EBV VCA gp125 Antibody, clone L2
  • Hepatitis C virus core protein differently regulates the JAK-STAT signaling pathway under interleukin-6 and interferon-gamma stimuli. 12764155

    We established hepatitis C virus (HCV) core-expressing cells and investigated whether HCV core would modify the Janus kinase (JAK)-signal transducer and activator transcription factor (STAT) pathway under interleukin-6 (IL-6) and interferon (IFN)-gamma stimuli. Phosphorylation of JAK1/2 and STAT3, and STAT3-mediated transcription, were prevented by HCV core under IL-6 stimulation. In contrast, HCV core increased phosphorylation of JAK1/2 and STAT1 and STAT1-mediated transcription under IFN-gamma stimulation. Immunoprecipitation/Western blot analysis showed that HCV core could bind to JAK1/2. The PGYPWP sequences at codons 79-84 within HCV core were important for interaction with JAKs by in vitro binding analysis. In the reporter gene assay, HCV core-mediated suppression of JAK-STAT pathway under IL-6 stimulation was not observed by abrogation of PGYPWP sequence, suggesting that HCV core/JAK interaction may directly affect the signal transduction. In contrast, augmentation of JAK-STAT pathway was still seen by HCV core without functional PGYPWP sequence under IFN-gamma stimulation. Flow cytometric analysis revealed that HCV core up-regulated of IFN-gamma receptor 2 expression, which may be responsible for HCV core-mediated enhancement of JAK-STAT pathway under IFN-gamma stimulation. In conclusion, HCV core has different effects on the JAK-STAT pathway under IL-6 and IFN-gamma stimuli. This may be exerted by these two independent mechanisms.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Sendai virus particle production: basic requirements and role of the SYWST motif present in HN cytoplasmic tail. 20633915

    Sendai virus (SeV) HN protein is dispensable for virus particle production. HN incorporation into virions strictly depends on a cytoplasmic domain SYWST motif. HNAFYKD, with SYWST replaced with the analogous sequence of measles virus (MeV) H (AFYKD), is not incorporated in virus particles produced by LLCMK2 cells, although it is normally expressed at the plasma membrane. Unlike HNSYWST, HNAFYKD is not internalized to late endosomes, raising the possibility that HN internalization is required for uptake into virus particles. Various mosaic MeV-H containing increasing amounts of the SeV-HN all failed to be taken up in SeV virions. However, when co-expressed with HNAFYKD these MeV-H chimera induced HNAFYKD uptake into virions showing that internalization is not a prerequisite for HN uptake into particles. We propose that HN incorporation in virus particles requires first neutralization by HN of a putative inhibitor of infectious particle formation.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB8905
    Produktbezeichnung:
    Anti-Measles Blend Antibody, hemagglutinin, clones CV1, CV4
  • Hepatitis C virus core protein promotes the migration and invasion of hepatocyte via activating transcription of extracellular matrix metalloproteinase inducer. 21470566

    The chronic infection of hepatitis C virus (HCV) becomes a main factor evoking hepatocellular carcinoma, where the HCV core protein plays a central role in hepatocarcinogenesis. Whether the core protein directly contributes to metastasis of hepatocytes still remains to be reported in literature. Transwell chamber migration assay, Boyden chamber invasion assays and scanning electron microscopy observations were performed to determine the prometastatic ability of HCV core protein when expressed in human hepatocyte L02 cells. In addition, western blots, dual-luciferase assays, and chromatin immunoprecipitation assays were used to elucidate HCV core protein dependent pathways that promote metastasis in hepatocytes. Our investigation suggests that HCV core protein markedly enhances the capability of migration and invasion in L02 clones expressing HCV core proteins. The metastasis-promoting effect of the core protein is, in part, highly dependent on its effect on promoting the binding of transcription factor Sp1 to the extracellular matrix metalloproteinase inducer promoter. The effect of Sp1 binding resulted in an increase in extracellular matrix metalloproteinase inducer expression and progression of metastasis. Thus, we report that the expression of HCV core protein contributes to the metastasis of hepatocyte cells through activating transcription of extracellular metalloproteinase inducer.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    17-371
    Produktbezeichnung:
    EZ-ChIP™