Millipore Sigma Vibrant Logo
 

Nitrato


33 Results Advanced Search  
Showing
Products (0)
Documents (33)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (28)
  • (4)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • NITRATION OF SPECIFIC TYROSINES IN FOF1 ATP SYNTHASE AND ACTIVITY LOSS IN AGING1. 20159857

    It has been reported that C-nitration of proteins occurs under nitrative/oxidative stress; however, its role in pathophysiological situations is not fully understood. In this study, we determined that nitration of Tyr(345) and Tyr(368) in the beta-subunit of the mitochondrial F(o)F(1)-ATPase is a major target for nitrative stress in rat liver under in vivo conditions. The chemical characteristics of these Tyr make them suitable for a facilitated nitration (solvent accessibility, consensus sequence, and pK(a)). Moreover, beta-subunit nitration increased significantly with the age of the rats (from 4 to 80 weeks old) and correlated with decreased ATP hydrolysis and synthesis rates. Although its affinity for ATP binding was unchanged, maximal ATPase activity decreased between young and old rats by a factor of two. These changes directly impacted the available ATP concentration in vivo, and it was expected that they would affect multiple cellular ATP-dependent processes. For instance, at least 50% of available [ATP] in the liver of older rats would have to be committed to sustain maximal Na(+)-K(+)-ATPase activity, whereas only 30% would be required for young rats. If this requirement was not fulfilled, the osmoregulation and Na(+)-nutrient cotransport in liver of older rats would be compromised. On the basis of our studies, we propose that targeted nitration of the beta-subunit is an early marker for nitrative stress and aging.
    Document Type:
    Reference
    Product Catalog Number:
    05-233
    Product Catalog Name:
    Anti-Nitrotyrosine Antibody, clone 1A6
  • Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. 19410558

    Histone deacetylases (HDACs) are key molecules involved in epigenetic regulation of gene expression. We have previously demonstrated that oxidative stress caused a reduction in HDAC2, resulting in amplified inflammation and reduced corticosteroid responsiveness. Here we showed nitrative/oxidative stress reduced HDAC2 expression via nitration of distinct tyrosine residues. Peroxynitrite, hydrogen peroxide and cigarette smoke-conditioned medium reduced HDAC2 expression in A549 epithelial cells in vitro. This reduction was due to increased proteasomal degradation following ubiquitination rather than reduction of mRNA expression or stability. HDAC2 was nitrated under nitrative/oxidative stress and in the peripheral lung tissues of smokers and patients with chronic obstructive pulmonary disease. Mutagenesis studies replacing tyrosine (Y) residues with alanine revealed that Y253 is at least partly responsible for the proteasomal degradation of HDAC2 under nitrative stress. Thus, nitration of distinct tyrosine residues modifies both the expression and activity of HDAC2, having an impact on epigenetic regulation.
    Document Type:
    Reference
    Product Catalog Number:
    05-233
    Product Catalog Name:
    Anti-Nitrotyrosine Antibody, clone 1A6
  • Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. 8876227

    Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Astroglial nitration after postnatal excitotoxic damage: correlation with nitric oxide sources, cytoskeletal, apoptotic and antioxidant proteins. 15665612

    Oxygen free radicals and nitric oxide (NO) participate in the pathogenesis of acute central nervous system (CNS) injury by forming peroxynitrite, which promotes oxidative damage and tyrosine nitration. Neuronal nitration is associated with cell death, but little is known of the characteristics and cell fate of nitrated astrocytes. In this study, we have used a postnatal excitotoxic lesion model (intracortical NMDA injection) and our aims were (i) to evaluate the temporal and spatial pattern of astroglial nitration in correlation with the neuropathological process and the sources of NO; and (ii) to establish, if any, the correlation among astrocyte nitration and other events such as expression of cytoskeletal proteins, antioxidant enzymes, and cell death markers to cope with nitration and/or undergo cell death. Our results show that after postnatal excitotoxic damage two distinct waves of nitration were observed in relation to astrocytes. At 24 h post-lesion, early-nitrated astrocytes were found within the neurodegenerating area, coinciding with the time of maximal cell death. These early-nitrated astrocytes are highly ramified protoplasmic cells, showing diffuse glial fibrillary acidic protein (GFAP) content and expressing inducible NOS. At later time-points, when astrogliosis is morphologically evident, nitrated hypertrophied reactive astrocytes are observed in the penumbra and the neurodegenerated area, displaying increased expression of GFAP and vimentin cytoskeletal proteins and of metallothionein I-II and Cu/Zn superoxide dismutase antioxidant proteins. Moreover, despite revealing activated caspase-3, they do not show TUNEL labeling. In summary, we show that nitrated astrocytes in vivo constitute a subpopulation of highly reactive astrocytes which display high resistance towards oxidative stress induced cell death.
    Document Type:
    Reference
    Product Catalog Number:
    AB5382
    Product Catalog Name:
    Anti-Nitric Oxide Synthase II Antibody