Millipore Sigma Vibrant Logo
 

:synergy


490 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (253)
  • (172)
  • (2)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Regulation of Sertoli-germ cell adhesion and sperm release by FSH and nonclassical testosterone signaling. 21177760

    Testosterone and FSH act in synergy to produce the factors required to maximize the production of spermatozoa and male fertility. However, the molecular mechanisms by which these hormones support spermatogenesis are not well established. Recently, we identified a nonclassical mechanism of testosterone signaling in cultured rat Sertoli cells. We found that testosterone binding to the androgen receptor recruits and activates Src tyrosine kinase. Src then causes the activation of the epidermal growth factor receptor, which results in the phosphorylation and activation of the ERK MAPK and the cAMP response element-binding protein transcription factor. In this report, we find that FSH inhibits testosterone-mediated activation of ERK and the MAPK pathway in Sertoli cells via the protein kinase A-mediated inhibition of Raf kinase. In addition, FSH, as well as inhibitors of Src and ERK kinase activity, reduced germ cell attachment to Sertoli cells in culture. Using pathway-specific androgen receptor mutants we found that the nonclassical pathway is required for testosterone-mediated increases in germ cell attachment to Sertoli cells. Studies of seminiferous tubule explants determined that Src kinase, but not ERK kinase, activity is required for the release of sperm from seminiferous tubule explants. These findings suggest the nonclassical testosterone-signaling pathway acts via Src and ERK kinases to facilitate the adhesion of immature germ cells to Sertoli cells and through Src to permit the release of mature spermatozoa. In contrast, FSH acts to limit testosterone-mediated ERK kinase activity and germ cell attachment.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Drug synergy drives conserved pathways to increase fission yeast lifespan. 25786258

    Aging occurs over time with gradual and progressive loss of physiological function. Strategies to reduce the rate of functional loss and mitigate the subsequent onset of deadly age-related diseases are being sought. We demonstrated previously that a combination of rapamycin and myriocin reduces age-related functional loss in the Baker's yeast Saccharomyces cerevisiae and produces a synergistic increase in lifespan. Here we show that the same drug combination also produces a synergistic increase in the lifespan of the fission yeast Schizosaccharomyces pombe and does so by controlling signal transduction pathways conserved across a wide evolutionary time span ranging from yeasts to mammals. Pathways include the target of rapamycin complex 1 (TORC1) protein kinase, the protein kinase A (PKA) and a stress response pathway, which in fission yeasts contains the Sty1 protein kinase, an ortholog of the mammalian p38 MAP kinase, a type of Stress Activated Protein Kinase (SAPK). These results along with previous studies in S. cerevisiae support the premise that the combination of rapamycin and myriocin enhances lifespan by regulating signaling pathways that couple nutrient and environmental conditions to cellular processes that fine-tune growth and stress protection in ways that foster long term survival. The molecular mechanisms for fine-tuning are probably species-specific, but since they are driven by conserved nutrient and stress sensing pathways, the drug combination may enhance survival in other organisms.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-419
    Nombre del producto:
    Anti-Myc Tag Antibody, clone 9E10
  • Synergy between the NAMPT inhibitor GMX1777(8) and pemetrexed in non-small cell lung cancer cells is mediated by PARP activation and enhanced NAD consumption. 25145669

    GMX1778 and its prodrug GMX1777 represent a new class of cancer drugs that targets nicotinamide phosphoribosyltransferase (NAMPT) as a new strategy to interfere with biosynthesis of the key enzymatic cofactor NAD, which is critical for a number of cell functions, including DNA repair. Using a genome-wide synthetic lethal siRNA screen, we identified the folate pathway-related genes, deoxyuridine triphosphatase and dihydrofolate reductase, the silencing of which sensitized non-small cell lung carcinoma (NSCLC) cells to the cytotoxic effects of GMX. Pemetrexed is an inhibitor of dihydrofolate reductase currently used to treat patients with nonsquamous NSCLC. We found that combining pemetrexed with GMX1777 produced a synergistic therapeutic benefit in A549 and H1299 NSCLC cells in vitro and in a mouse A549 xenograft model of lung cancer. Pemetrexed is known to activate PARPs, thereby accelerating NAD consumption. Genetic or pharmacologic blockade of PARP activity inhibited this effect, impairing cell death by pemetrexed either alone or in combination with GMX1777. Conversely, inhibiting the base excision repair pathway accentuated NAD decline in response to GMX and the cytotoxicity of both agents either alone or in combination. These findings provide a mechanistic rationale for combining GMX1777 with pemetrexed as an effective new therapeutic strategy to treat nonsquamous NSCLC.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Recurrent respiratory syncytial virus infections in allergen-sensitized mice lead to persistent airway inflammation and hyperresponsiveness. 10843718

    Respiratory syncytial virus (RSV) infection is considered a risk factor for bronchial asthma; however, the synergy between allergen sensitization and RSV infection in the development of pulmonary inflammation and asthma has been controversial. In this study the effects of primary and recurrent RSV infection on allergic asthma were examined in a group of control, RSV-infected, Dermatophagoides farinae (Df) allergen-sensitized, and Df allergen-sensitized plus RSV-infected BALB/c mice. Primary RSV infection in Df-sensitized mice transiently increases airway responsiveness, which is accompanied by increases in eosinophilic infiltration, the expression of ICAM-1, and macrophage inflammatory protein-1alpha (MIP-1alpha) in the lung tissue. A secondary RSV infection persistently enhances airway responsiveness in Df-sensitized mice, with a concomitant increase in MIP-1alpha and RSV Ag load in lung tissues. Bulk cultures of thoracic lymph node mononuclear cells demonstrate that acute RSV infection augments both Th1- and Th2-like cytokines, whereas secondary and tertiary infections shift the cytokine profile in favor of the Th2-like cytokine response in Df-sensitized mice. The elevated total serum IgE level in the Df-sensitized mice persists following only RSV reinfection. Thus, recurrent RSV infections in Df-sensitized mice augment the synthesis of Th2-like cytokines, total serum IgE Abs, and MIP-1alpha, which are responsible for persistent airway inflammation and hyperresponsiveness, both of which are characteristics of asthma.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1128
    Nombre del producto:
    Anti-Respiratory Syncytial Virus Antibody
  • Synergy between paclitaxel plus an exogenous methyl donor in the suppression of murine demyelinating diseases. 17548438

    Progressive demyelination in multiple sclerosis (MS) reflects the negative balance between myelin damage and repair due to physical and molecular barriers, such as astrocytic glial scars, between oligodendrocytes and target neurons. In this paper, we show that combination therapy with paclitaxel (Taxol) plus the universal methyl-donor, vitamin B12CN (B12CN), dramatically limits progressive demyelination, and enhances remyelination in several independent, immune and nonimmune, in vivo and in vitro model systems. Combination therapy significantly reduced clinical signs of EAE in SJL mice, as well as the spontaneously demyelinating ND4 transgenic mouse. Astrocytosis was normalised in parallel to ultrastructural and biochemical evidence of remyelination. The combination therapy suppressed T cell expansion, reduced IFN-gamma, while enhancing IFN-beta and STAT-1 expression, STAT-1 phosphorylation and methylation of STAT-1 and MBP in the brain. Paclitaxel/B12CN has nearly identical effects to the previously described combination of IFN-beta/ B12CN, whose clinical usefulness is transient because of IFN-neutralising antibodies, not observed (or expected) with the present drug combination. This report provides a mechanistic foundation for the development of a new therapeutic strategy in humans with MS.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB9918
  • A SUMO-regulated activation function controls synergy of c-Myb through a repressor-activator switch leading to differential p300 recruitment. 20385574

    Synergy between transcription factors operating together on complex promoters is a key aspect of gene activation. The ability of specific factors to synergize is restricted by sumoylation (synergy control, SC). Focusing on the haematopoietic transcription factor c-Myb, we found evidence for a strong SC linked to SUMO-conjugation in its negative regulatory domain (NRD), while AMV v-Myb has escaped this control. Mechanistic studies revealed a SUMO-dependent switch in the function of NRD. When NRD is sumoylated, the activity of c-Myb is reduced. When sumoylation is abolished, NRD switches into being activating, providing the factor with a second activation function (AF). Thus, c-Myb harbours two AFs, one that is constitutively active and one in the NRD being SUMO-regulated (SRAF). This double AF augments c-Myb synergy at compound natural promoters. A similar SUMO-dependent switch was observed in the regulatory domains of Sp3 and p53. We show that the change in synergy behaviour correlates with a SUMO-dependent differential recruitment of p300 and a corresponding local change in histone H3 and H4 acetylation. We therefore propose a general model for SUMO-mediated SC, where SUMO controls synergy by determining the number and strength of AFs associated with a promoter leading to differential chromatin signatures.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. 16912162

    Pathways mediated by p53 and Rb are frequently altered in aggressive human cancers, including prostate carcinoma. To test directly the roles of p53 and Rb in prostate carcinogenesis, we have conditionally inactivated these genes in the prostate epithelium of the mouse. Inactivation of either p53 or Rb leads to prostatic intraepithelial neoplasia developing from the luminal epithelium by 600 days of age. In contrast, inactivation of both genes results in rapidly developing (median survival, 226 days) carcinomas showing both luminal epithelial and neuroendocrine differentiation. The resulting neoplasms are highly metastatic, resistant to androgen depletion from the early stage of development, and marked with multiple gene expression signatures commonly found in human prostate carcinomas. Interestingly, gains at 4qC3 and 4qD2.2 and loss at 14qA2-qD2 have been consistently found by comparative genomic hybridization. These loci contain such human cancer-related genes as Nfib, L-myc, and Nkx3.1, respectively. Our studies show a critical role for p53 and Rb deficiency in prostate carcinogenesis and identify likely secondary genetic alterations. The new genetically defined model should be particularly valuable for providing new molecular insights into the pathogenesis of human prostate cancer.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-680
    Nombre del producto:
    Anti-Androgen Receptor Antibody
  • Synergy of Eed and Tsix in the repression of Xist gene and X-chromosome inactivation. 18511907

    X-chromosome inactivation (XCI) depends on the noncoding Xist gene. Xist transcription is negatively regulated by its antisense partner Tsix, whose disruption results in nonrandom XCI in females. However, males can maintain Xist in a repressed state without Tsix, indicating participation of additional factor(s) in the protection of the single male X from inactivation. Here, we provide evidence that the histone methyltransferase Eed is also involved in the process. Male embryonic stem cells with Eed-null and Tsix mutations (X(Delta)Y Eed-/-) showed Xist hyperactivation upon differentiation, whereas cells with either mutation alone did not. Impaired X-linked gene expression was observed in the X(Delta)Y Eed-/- ES cells at the onset of differentiation. The Xist promoter in the X(Delta)Y Eed-/- cells showed elevated histone H3-dimethyl lysine 4 modifications and lowered CpG methylation, which are characteristics of open chromatin. Hence, we identified Eed as an additional major player in the regulation of Xist expression. The synergy of Polycomb group proteins and antisense Tsix transcription in Xist gene regulation explains why males can repress Xist without Tsix.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Enzyme-activated Prodrug Therapy Enhances Tumor-specific Replication of Adenovirus Vectors. 12414633

    Adenoviruses (Ads) that selectively replicate in tumor cells have shown promising preliminary results in clinical trials, especially in combination with chemotherapy. Here, we describe a system that combines the antitumor synergy of Ads and chemotherapeutic agents with the benefits of enzyme-activated prodrug therapy. In this system, a functional transgene expression cassette is created by homologous recombination during adenoviral DNA replication. Transgene expression is strictly dependent on viral DNA replication, which in turn is tumor specific. We constructed replication-activated Ad vectors to express a secreted form of beta-glucuronidase and a cytosine deaminase/uracil phosphoribosyltransferase, which activate the prodrugs 9-aminocamptothecin glucuronide to 9-aminocamptothecin and 5-fluorocytosine to 5-fluorouracil (5-FU) and further to 5-fluoro-UMP, respectively. We demonstrated replication-dependent transgene expression, prodrug activation, and induction of tumor cell toxicity by secreted beta-glucuronidase and cytosine deaminase/uracil phosphoribosyltransferase. Furthermore, exposure of cells to activated prodrug or drug at subtoxic concentrations enhanced viral DNA replication. Characteristically, these agents induced changes in the cell cycle status of exposed cells (G(2) arrest), which closely resembled the effect of wild-type Ad infection, and are thought to be favorable for viral replication. We tested a number of cytostatic drugs (camptothecin, etoposide, daunorubicin, cisplatin, 5-fluorouracil, hydroxyurea, Taxol, and actinomycin D) for their effect on viral DNA replication and found considerable differences between individual agents. Finally, we show that the combination of viral and prodrug therapy enhances viral replication and spread in liver metastases derived from human colon carcinoma or cervical carcinoma in a mouse model. Our data indicate that specific vector/drug combinations tailored to be synergistic may have the potential to improve the potency of either therapeutic approach. These data also provide a new rationale for expressing prodrug-activating enzymes from conditionally replicating Ads.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1056F
    Nombre del producto:
    Anti-Adenovirus Antibody, FITC-conjugated