Millipore Sigma Vibrant Logo
 

endothelin+receptor


84 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (51)
  • (25)
  • (4)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Regulatory mechanism of endothelin receptor B in the cerebral arteries after focal cerebral ischemia. 25479176

    Increased expression of endothelin receptor type B (ETBR), a vasoactive receptor, has recently been implied in the reduced cerebral blood flow and exacerbated neuronal damage after ischemia-reperfusion (I/R). The study explores the regulatory mechanisms of ETBR to identify drug targets to restore normal cerebral artery contractile function as part of successful neuroprotective therapy.We have employed in vitro methods on human and rat cerebral arteries to study the regulatory mechanisms and the efficacy of target selective inhibitor, Mithramycin A (MitA), to block the ETBR mediated contractile properties. Later, middle cerebral artery occluded (MCAO) rats were used to substantiate the observations. Quantative PCR, immunohistochemistry, western blot and wire myograph methods were employed to study the expression and contractile properties of cerebral arteries.Increased expression of specificity protein (Sp1) was observed in human and rat cerebral arteries after organ culture, strongly correlating with the ETBR upregulation. Similar observations were made in MCAO rats. Treatment with MitA, a Sp1 specific inhibitor, significantly downregulated the ETBR mRNA and protein levels. It also significantly reduced the ETBR mediated cerebrovascular contractility. Detailed analysis indicated that ERK1/2 mediated phosphorylation of Sp1 might be essential for ETBR transcription.Transcription factor Sp1 regulates the ETBR mediated vasoconstriction in focal cerebral ischemia via MEK-ERK signaling, which is also conserved in humans. The results show that MitA can effectively be used to block ETBR mediated vasoconstriction as a supplement to an existing ischemic stroke therapy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-645
    Nombre del producto:
    Anti-Sp1 Antibody
  • The role of endothelin receptor A during myelination of developing oligodendrocytes. 21218036

    Endothelin (ET)-1 and its receptors (ETA and ETB receptor) are present in the central nervous system. ET exerts biological effects on gliogenesis and glial cell functions. In order to define a possible mechanism of ETA receptor signaling, the distribution of the ETA receptor in developing oligodendrocytes and the effects of ET-1 on the myelination of oligodendrocytes were examined. ETA receptor immunoreactivity was confined to the perivascular elements of the blood vessels during early postnatal development. However later in development, ETA receptor immunoreactivity was no longer observed in the vessels but became localized to the myelinating oligodendrocytes of the primitive corpus callosum of the white matter, apart from the vessels. ET-1 induced myelin basic protein (MBP) in primary oligodendrocyte precursor cell culture though the ETA receptor and was blocked by an ETA receptor antagonist. In addition, ET-1 evoked the release of Ca(2+) which is a central regulator of oligodendrocyte differentiation. Our results provide a link between ET-1 and its ETA receptor and myelination during oligodendrocyte differentiation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB386
    Nombre del producto:
    Anti-Myelin Basic Protein Antibody, a.a. 82-87
  • A novel cross-talk between endothelin and ErbB receptors controlling glutamate transporter expression in astrocytes. 22671705

    The endothelin and epidermal growth factor (EGF) systems are central to the control of reactive brain processes and are thought to partly exert these tasks by endothelin-induced transactivation of the epidermal growth factor receptor (EGFR) Here we show that beyond EGFR transactivation, endothelins prevent the ligand-induced internalization of the EGFR. We unravel that endothelins abrogate internalization of the EGFR by either promoting the formation of internalization-deficient EGFR/ErB2-heterodimers or by activating c-Abl kinase, a negative regulator of EGFR internalization. We further provide evidence that this cross-talk is operational in the control of astrocytic glutamate transport. Specifically, we establish that the inhibitory effects exerted by endothelins on basal as well as EGF-induced expression of the major astroglial glutamate transporter subtype, glutamate transporter 1, are a direct consequence of the endothelin-dependent retention of the EGFR at the cell surface. Together our findings unravel a previously unknown cross-talk between endothelin and epidermal growth factor receptors, which may have implications for a variety of pathological conditions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-524
    Nombre del producto:
    Anti-Spry2 Antibody
  • Endothelin receptor a blockade is an ineffective treatment for adriamycin nephropathy. 24265790

    Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA) and endothelin receptor B (ETB). Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p.) or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p.), atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios). Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4
  • Endothelin A receptor antagonism enhances inhibitory effects of anti-ganglioside GD2 monoclonal antibody on invasiveness and viability of human osteosarcoma cells. 24727660

    Endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling is important for osteosarcoma (OS) progression. Monoclonal antibodies (mAbs) targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL), anti-GD2 14G2a mAb (50 µg/mL), selective ETAR antagonist BQ123 (5 µM), or 14G2a (50 µg/mL)+BQ123 (5 µM). Cells with knockdown of ETAR (ETAR-shRNA) with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K) inhibitor BKM120 (50 µM) were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2) expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473) of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-195
  • Endothelinergic cells in the subependymal region of mice. 20116370

    Endothelin (ET) is a small peptide that activates astrocyte proliferation, regulates proliferation and migration of embryonic neural precursor cells and stimulates glioblastoma growth. We found that in mouse brain, ET and its receptor B (ETRB) were highly expressed in the subependymal zone (SEZ), an adult neurogenic niche. Cells with ET immunoreactivity (ET+ cells) selectively appeared along the lateral and dorsal walls of the lateral ventricle. They also appeared in the cingular region of the corpus callosum. Subependymal ET+ cells also displayed prominin (PRO), glial fibrillary acidic protein (GFAP) and ETRB immunoreactivities. ET+ processes traversed the ependymal epithelium and approached the ventricular lumen. Ependymal cells only showed ETRB-ir. A small but consistent number of ET+ cells displayed proliferation markers: 5-bromo-2'-deoxyuridine (BrdU) incorporation, and minichromosome maintenance protein 2 (Mcm2). Cortical injury and G-CSF increased subependymal endothelinergic cells and their proliferation markers. Our findings suggest that ET and ETRB might be associated with regulation of adult neural stem cells and their migration through neurogenic and gliogenic pathways.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB4310
    Nombre del producto:
    Anti-CD133 Antibody, clone 13A4
  • Desensitization and internalization of endothelin receptor A: impact of G protein-coupled receptor kinase 2 (GRK2)-mediated phosphorylation. 24064210

    Endothelin receptor A (ETA), a G protein-coupled receptor, mediates endothelin signaling, which is regulated by GRK2. Three Ser and seven Thr residues recently proven to be phosphoacceptor sites are located in the C-terminal extremity (CTE) of the receptor following its palmitoylation site. We created various phosphorylation-deficient ETA mutants. The phospholipase C activity of mutant receptors in HEK-293 cells was analyzed during continuous endothelin stimulation to investigate the impact of phosphorylation sites on ETA desensitization. Total deletion of phosphoacceptor sites in the CTE affected proper receptor regulation. However, proximal and distal phosphoacceptor sites both turned out to be sufficient to induce WT-like desensitization. Overexpression of the Gαq coupling-deficient mutant GRK2-D110A suppressed ETA-WT signaling but failed to decrease phospholipase C activity mediated by the phosphorylation-deficient mutant ETA-6PD. In contrast, GRK2-WT acted on both receptors, whereas the kinase-inactive mutant GRK2-D110A/K220R failed to inhibit signaling of ETA-WT and ETA-6PD. This demonstrates that ETA desensitization involves at least two autonomous GRK2-mediated components: 1) a phosphorylation-independent signal decrease mediated by blocking of Gαq and 2) a mechanism involving phosphorylation of Ser and Thr residues in the CTE of the receptor in a redundant fashion, able to incorporate either proximal or distal phosphoacceptor sites. High level transfection of GRK2 variants influenced signaling of ETA-WT and ETA-6PD and hints at an additional phosphorylation-independent regulatory mechanism. Furthermore, internalization of mRuby-tagged receptors was observed with ETA-WT and the phosphorylation-deficient mutant ETA-14PD (lacking 14 phosphoacceptor sites) and turned out to be based on a phosphorylation-independent mechanism.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-465
    Nombre del producto:
    Anti-GRK 2/3 (βARK 1/2) Antibody, clone C5/1.1
  • Cloning and functional expression of a vascular smooth muscle endothelin 1 receptor. 1849646

    By screening a cDNA library derived from the A10 rat vascular smooth muscle cell line for functional expression in COS cells, we have isolated a high-affinity receptor for endothelin 1 (Kd = 476 pM) and endothelin 2. The affinity of the cloned endothelin receptor for endothelin 3 is greater than 100 times less in A10 cells and in a CHO cell line stably transformed by the endothelin receptor cDNA. The 426-amino acid receptor polypeptide has seven putative hydrophobic transmembrane domains and is presumed to be a member of the family of guanine nucleotide-binding regulatory (G) protein-coupled receptors. Microinjection of in vitro transcripts of the cloned cDNA into CHO cells confers a transient increase in intracellular calcium in response to endothelin 1, indicating that the receptor is functional and couples to the appropriate G protein(s). RNA analysis reveals high expression in rat lung and heart, tissues known to exhibit binding to iodinated endothelin 1.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
  • Status epilepticus induces vasogenic edema via tumor necrosis factor-α/ endothelin-1-mediated two different pathways. 24040253

    Status epilepticus (SE) induces vasogenic edema in the piriform cortex with disruptions of the blood-brain barrier (BBB). However, the mechanisms of vasogenic edema formation following SE are still unknown. Here we investigated the endothelin B (ETB) receptor-mediated pathway of SE-induced vasogenic edema. Following SE, the release of tumor necrosis factor-α (TNF-α) stimulated endothelin-1 (ET-1) release and expression in neurons and endothelial cells. In addition, TNF-α-induced ET-1 increased BBB permeability via ETB receptor-mediated endothelial nitric oxide synthase (eNOS) activation in endothelial cells. ETB receptor activation also increased intracellular reactive oxygen species by NADPH oxidase production in astrocytes. These findings suggest that SE results in BBB dysfunctions via endothelial-astroglial interactions through the TNF-α-ET-1-eNOS/NADPH oxidase pathway, and that these ETB receptor-mediated interactions may be an effective therapeutic strategy for vasogenic edema in various neurological diseases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo