Millipore Sigma Vibrant Logo
 

glikol


154 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (63)
  • (7)
  • (1)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels. 20804868

    While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB2035
    Nombre del producto:
    Anti-Chondroitin 6 Sulfate Antibody, clone MK-302
  • Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. 3520509

    Use of an ethylene glycol based cryoprotectant solution has been found to be effective for the long-term storage of brain tissue either in block form or as freely floating sections prior to immunocytochemical processing. Storage of tissue in the solution at -20 degrees C or 4 degrees C for up to 3 months produced no adverse effects upon tissue morphology, nor was LHRH immunoreactivity diminished or accompanied by elevated non-specific staining. Furthermore, ultrastructural analysis of cryoprotected tissue revealed excellent preservation of cellular morphology. It is anticipated that this method can find use when it is necessary or desirable for the investigator to retain tissue for later immunocytochemical or electron microscopic processing.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. 12704396

    We have engineered synthetic poly(ethylene glycol) (PEG)-based hydrogels as cell-ingrowth matrices for in situ bone regeneration. These networks contain a combination of pendant oligopeptide ligands for cell adhesion (RGDSP) and substrates for matrix metalloproteinase (MMP) as linkers between PEG chains. Primary human fibroblasts were shown to migrate within these matrices by integrin- and MMP-dependent mechanisms. Gels used to deliver recombinant human bone morphogenetic protein-2 (rhBMP-2) to the site of critical- sized defects in rat crania were completely infiltrated by cells and were remodeled into bony tissue within five weeks. Bone regeneration was dependent on the proteolytic sensitivity of the matrices and their architecture. The cell-mediated proteolytic invasiveness of the gels and entrapment of rhBMP-2 resulted in efficient and highly localized bone regeneration.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • A tetra(ethylene glycol) derivative of benzothiazole aniline enhances Ras-mediated spinogenesis. 23719799

    The tetra(ethylene glycol) derivative of benzothiazole aniline, BTA-EG4, is a novel amyloid-binding small molecule that can penetrate the blood-brain barrier and protect cells from Aβ-induced toxicity. However, the effects of Aβ-targeting molecules on other cellular processes, including those that modulate synaptic plasticity, remain unknown. We report here that BTA-EG4 decreases Aβ levels, alters cell surface expression of amyloid precursor protein (APP), and improves memory in wild-type mice. Interestingly, the BTA-EG4-mediated behavioral improvement is not correlated with LTP, but with increased spinogenesis. The higher dendritic spine density reflects an increase in the number of functional synapses as determined by increased miniature EPSC (mEPSC) frequency without changes in presynaptic parameters or postsynaptic mEPSC amplitude. Additionally, BTA-EG4 requires APP to regulate dendritic spine density through a Ras signaling-dependent mechanism. Thus, BTA-EG4 may provide broad therapeutic benefits for improving neuronal and cognitive function, and may have implications in neurodegenerative disease therapy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Effects of ethylene glycol monomethyl ether and its metabolite, 2-methoxyacetic acid, on organogenesis stage mouse limbs in vitro. 24798094

    Exposure to ethylene glycol monomethyl ether (EGME), a glycol ether compound found in numerous industrial products, or to its active metabolite, 2-methoxyacetic acid (2-MAA), increases the incidence of developmental defects. Using an in vitro limb bud culture system, we tested the hypothesis that the effects of EGME on limb development are mediated by 2-MAA-induced alterations in acetylation programming. Murine gestation day 12 embryonic forelimbs were exposed to 3, 10, or 30 mM EGME or 2-MAA in culture for 6 days to examine effects on limb morphology; limbs were cultured for 1 to 24 hr to monitor effects on the acetylation of histones (H3K9 and H4K12), a nonhistone protein, p53 (p53K379), and markers for cell cycle arrest (p21) and apoptosis (cleaved caspase-3). EGME had little effect on limb morphology and no significant effects on the acetylation of histones or p53 or on biomarkers for cell cycle arrest or apoptosis. In contrast, 2-MAA exposure resulted in a significant concentration-dependent increase in limb abnormalities. 2-MAA induced the hyperacetylation of histones H3K9Ac and H4K12Ac at all concentrations tested (3, 10, and 30 mM). Exposure to 10 or 30 mM 2-MAA significantly increased acetylation of p53 at K379, p21 expression, and caspase-3 cleavage. Thus, 2-MAA, the proximate metabolite of EGME, disrupts limb development in vitro, modifies acetylation programming, and induces biomarkers of cell cycle arrest and apoptosis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    04-119
    Nombre del producto:
    Anti-acetyl-Histone H4 (Lys12) Antibody, rabbit monoclonal
  • Towards an understanding of adsorption behaviour in non-aqueous systems: adsorption of poly(vinyl pyrrolidone) and poly(ethylene glycol) onto silica from 2H, 3H-perfluoro ... 16259769

    The adsorption behaviour of low molecular weight poly(ethylene glycol) (PEG 600) and poly(vinyl pyrrolidone) (PVP K25) to silica particles has been investigated at room temperature (21 degrees C) in the partially fluorinated solvent 2H,3H-perfluoropentane (HPFP). PVP (absorbed amount, Gamma = 12 mg g(-1)) was found to adsorb more strongly than PEG (Gamma = 4 mg g(-1)). Both of these values were higher than observed in water. In a further distinction to the aqueous case, where PVP displaces PEG from the interface, no competitive adsorption effects were observed between these two polymers in HPFP, with the adsorbed amounts of each polymer being unchanged by the presence of the other. The stability of silica suspensions in HPFP was primarily dependent on the presence of PVP; PEG/silica systems were unstable, but PVP/silica and PEG/PVP/silica systems formed stable suspensions. All suspensions were destabilized by the addition of small (0.15 wt%) amounts of water. The observations made in this work would point to a flocculation phenomenon due to the addition of water, and not Ostwald ripening. The mechanism of this destabilization is likely to be water acting as a flocculation bridge between particles.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ABS196
  • Synthesis and properties of caprolactone and ethylene glycol copolymers for neural regeneration. 22534765

    Copolymer networks from poly(ethylene glycol) methacrylate (PEGMA) and caprolactone 2-(methacryloyloxy) ethyl ester were synthesized and the resulting structure of the copolymer network was characterized by differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, equilibrium water gain and dynamic mechanical analysis, results which were employed to conclude about the network structure of the resulting copolymers. The new material is a random copolymer with a good miscibility and increasing hydrophilicity as the PEGMA content increases in the composition. Physical data suggest an excess free volume and synergistic interactions between the lateral chains of both comonomers. Olfactory ensheathing cells were cultured on the different networks, and cell viability and proliferation were assessed by MTS assay. The copolymers with a 30 wt% of PEGMA showed the best results compared with the other compositions in this respect, indicating the relevance for biological performance of a balance of hydrophilic and hydrophobic functionalities in the polymer chain.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB365
    Nombre del producto:
    Anti-Nerve Growth Factor Receptor Antibody, extracellular, clone 192-IgG
  • Differential stimulation pathways of progesterone secretion from newly formed corpora lutea in rats treated with ethylene glycol monomethyl ether, sulpiride, or atrazine. 21427058

    Ethylene glycol monomethyl ether (EGME), sulpiride, and atrazine are known ovarian toxicants, which increase progesterone (P4) secretion and induce luteal cell hypertrophy following repeated administration. The aim of this study was to define the pathways by which these compounds exerted their effects on the ovary and hypothalamic-pituitary-gonadal (HPG) axis. In the ovary, changes in the steroidogenic activity of new and old corpora lutea (CL) were addressed. EGME (300 mg/kg), sulpiride (100 mg/kg), or atrazine (300 mg/kg) were orally given daily for four times from proestrus to diestrus in normal cycling rats. Treatment with all chemicals significantly increased serum P4 levels, and EGME as well as sulpiride induced increases in prolactin (PRL) levels. In new CL, at both the gene and the protein levels, all three chemicals upregulated the following steroidogenic factors: scavenger receptor class B type I, steroidogenic acute regulatory protein, P450 cholesterol side-chain cleavage, and 3β-hydroxysteroid dehydrogenase (HSD) and downregulated the luteolytic gene, 20α-HSD. Coadministration of EGME and bromocriptine, a D2 agonist, completely inhibited PRL but not P4 secretion. Additionally, steroidogenic factor expression levels were upregulated, and 20α-HSD level was downregulated in new CL. These results suggest that EGME both directly and indirectly stimulates P4 production in luteal cells, whereas sulpiride elevates P4 through activation of PRL secretion in the pituitary. Atrazine may directly activate new CL by stimulating steroidogenic factor expressions. The present study suggests that multiple pathways mediate the effects of EGME, sulpiride, and atrazine on the HPG axis and luteal P4 production in female rats in vivo.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1244
  • Efficient organic monoliths prepared by γ-radiation induced polymerization in the evaluation of histone deacetylase inhibitors by capillary(nano)-high performance liquid ... 21561626

    New monolithic HPLC columns were prepared by γ-radiation-triggered polymerization of hexyl methacrylate and ethylene glycol dimethacrylate monomers in the presence of porogenic solvents. Polymerization was carried out directly within capillary (250-200μm I.D.) and nano (100-75μm I.D.) fused-silica tubes yielding highly efficient columns for cap(nano)-LC applications. The columns were applied in the complete separation of core (H2A, H2B, H3, and H4) and linker (H1) histones under gradient elution with UV and/or electrospray ionization (ESI) ion trap mass spectrometry (MS) detections. Large selectivity towards H1, H2A-1, H2A-2, H2B, H3-1, H3-2 and H4 histones and complete separation were obtained within 8min time windows, using fast gradients and very high linear flow velocities, up to 11mm/s for high throughput applications. The method developed was the basis of a simple and efficient protocol for the evaluation of post-translational modifications (PTMs) of histones from NCI-H460 human non-small-cell lung cancer (NSCLC) and HCT-116 human colorectal carcinoma cells. The study was extended to monitoring the level of histone acetylation after inhibition of Histone DeACetylase (HDAC) enzymes with suberoylanilide hydroxamic acid (SAHA), the first HDAC inhibitor approved by the FDA for cancer therapy. Attractive features of our cap(nano)-LC/MS approach are the short analysis time, the minute amount of sample required to complete the whole procedure and the stability of the polymethacrylate-based columns. A lab-made software package ClustMass was ad hoc developed and used to elaborate deconvoluted mass spectral data (aligning, averaging, clustering) and calculate the potency of HDAC inhibitors, expressed through a Relative half maximal Inhibitory Concentration parameter, namely R_IC(50) and an averaged acetylation degree.Copyright © 2011 Elsevier B.V. All rights reserved.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Control of neural cell composition in poly(ethylene glycol) hydrogel culture with soluble factors. 21823990

    Poly(ethylene glycol) (PEG) hydrogels are being developed as cell delivery vehicles that have great potential to improve neuronal replacement therapies. Current research priorities include (1) characterizing neural cell growth within PEG hydrogels relative to standard culture systems and (2) generating neuronal-enriched populations within the PEG hydrogel environment. This study compares the percentage of neural precursor cells (NPCs), neurons, and glia present when dissociated neural cells are seeded within PEG hydrogels relative to standard monolayer culture. Results demonstrate that PEG hydrogels enriched the initial cell population for NPCs, which subsequently gave rise to neurons, then to glia. Relative to monolayer culture, PEG hydrogels maintained an increased percentage of NPCs and a decreased percentage of glia. This neurogenic advantage of PEG hydrogels is accentuated in the presence of basic fibroblast growth factor and epidermal growth factor, which more potently increase NPC and neuronal expression markers when applied to cells cultured within PEG hydrogels. Finally, this work demonstrates that glial differentiation can be selectively eliminated upon supplementation with a γ-secretase inhibitor. Together, this study furthers our understanding of how the PEG hydrogel environment influences neural cell composition and also describes select soluble factors that are useful in generating neuronal-enriched populations within the PEG hydrogel environment.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo