Millipore Sigma Vibrant Logo
 

hydrochloride


258 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (58)
  • (30)
  • (7)
  • (2)
  • (1)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Dose-dependent immunohistochemical changes in rat cornea and retina after oral methylphenidate administration. 19007354

    Methylphenidate hydrochloride (MPH), more commonly known as Ritalin, is a piperidine derivative and is the drug most often used to treat attention deficit/hyperactivity disorder, one of the most common behavioural disorders of children and young adults. The aim of this study was to investigate dose-dependent immunohistochemical Dopamine 2 receptor (D2) expression and apoptosis in the rat cornea and cornea. In this study, 27 female pre-pubertal Wistar albino rats, divided into three different dose groups (5, 10 and 20 mg/kg) and their control groups, were used. They were treated orally with methylphenidate dissolved in saline solution for 5 days per week during 3 months. At the end of the third month, after perfusion fixation, eye tissue was removed. Paraffin sections were collected for immunohistochemical and terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labelling assay studies. In our study, we observed that the cornea D2 receptor reactivity showed a dose-related increase after MPH treatment, especially in basal cells of the epithelium and a dose-dependent decrease in the retinal ganglion cell which was statistically meaningful. Analysis of the cornea thickness results showed no meaningful difference between groups. Apoptotic cell number showed a meaningful increase in the high dose treated group compared to the other groups of the study. The data suggest that Ritalin has degenerative effect on the important functional part of the eye, such as cornea and retina and its activating dopaminergic mechanism via similar neuronal paths, functionally and structurally, to induce morphological changes. As a result, we believe that this morphological changes negatively effecting functional organization of the affected cornea and retina.
    Tipo de documento:
    Referencia
    Referencia del producto:
    S7101
    Nombre del producto:
    ApopTag® Plus Peroxidase In Situ Apoptosis Kit
  • Attenuation of choroidal neovascularization by β(2)-adrenoreceptor antagonism. 23303344

    To determine whether β-adrenergic blockade inhibits choroidal neovascularization (CNV) in a mouse model of laser-induced CNV and to investigate the mechanism by which β-adrenoreceptor antagonism blunts CNV.Mice were subjected to laser burns, inducing CNV, and were treated with daily intraperitoneal injections of propranolol hydrochloride. Neovascularization was measured on choroidal-scleral flat mounts using intercellular adhesion molecule 2 immunofluorescence staining. The effect of β-adrenoreceptor signaling on expression of vascular endothelial growth factor (VEGF) was investigated using primary mouse choroidal endothelial cells (ChECs) and retinal pigment epithelial (RPE) cells. These cells were incubated with β-adrenoreceptor agonists and/or antagonists and assayed for Vegf messenger RNA and protein levels.University of Wisconsin School of Medicine and Public Health.Wild-type 6-week-old female C57BL/6j mice.Inhibition of CNV after propranolol treatment and Vegf messenger RNA and protein expression after treatment with β-adrenoreceptor agonists and antagonists.Propranolol-treated mice demonstrated a 50% reduction in laser-induced CNV. Treatment with norepinephrine bitartrate stimulated Vegf messenger RNA expression and protein secretion in ChECs and RPE cells. This effect was blocked by β2-adrenoreceptor antagonism and mimicked by β2-adrenoreceptor agonists.Attenuation of CNV is achieved by β-adrenergic blockade. The β2-adrenoreceptors regulate VEGF expression in ChECs and RPE cells.Antagonists of β-adrenoreceptors are safe and well tolerated in patients with glaucoma and cardiovascular disease. Thus, blockade of β-adrenoreceptors may provide a new avenue to inhibit VEGF expression in CNV.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • The 5-HT 2A serotonin receptor enhances cell viability, affects cell cycle progression and activates MEK-ERK1/2 and JAK2-STAT3 signalling pathways in human choriocarcinom ... 20338635

    Previous results from our group have demonstrated the expression of the 5-HT(2A) receptor and a mitogenic effect of serotonin in human trophoblast. The objectives of the present study were to investigate the role of the 5-HT(2A) receptor in trophoblast cells and to determine the signalling pathways activated by this receptor. We investigated the effect of (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI), a selective 5-HT(2A) agonist, on cell cycle progression and cell viability in BeWo and JEG-3 cells. We also investigated, by co-immunoprecipitation and western blot analysis, the involvement of the MEK-ERK1/2 and JAK2-STAT3 signalling pathways following activation of the placental 5-HT(2A) receptor. Our results showed a concentration-dependent increase of cell viability by DOI, which was reversed by ketanserin, a selective 5-HT(2A) receptor antagonist. Furthermore, activation of the 5-HT(2A) receptor by DOI increased cell entry into the G2/M and S phase (DNA synthesis) in BeWo and JEG-3 cells, respectively. In addition, stimulation of BeWo and JEG-3 cells by DOI activated both the MEK-ERK1/2 and the JAK2-STAT3 signalling pathways. This study demonstrated that the 5-HT(2A) receptor increases cell viability and affects cell cycle progression in human trophoblast cell lines as well as activates the MEK-ERK1/2 and JAK2-STAT3 intracellular signalling pathways, which are related to survival, differentiation, migration and invasion. These findings indicate that serotonin through the activation of the 5-HT(2A) receptor is a key regulator of placentation and may play a role in the pathophysiology of certain pregnancy disorders associated with alterations in placental development, such as preeclampsia, gestational diabetes and preterm birth.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. 11526230

    There is evidence both for and against Na(+)- and Cl(-)-dependent neurotransmitter transporters forming oligomers. We found that cross-linking the human dopamine transporter (DAT), which is heterologously expressed in human embryonic kidney 293 cells, either with copper phenanthroline (CuP) or the bifunctional reagent bis-(2-methanethiosulfonatoethyl)amine hydrochloride (bis-EA) increased the apparent molecular mass determined with nonreducing SDS/PAGE from approximately 85 to approximately 195 kDa. After cross-linking, but not before, coexpressed, differentially epitope-tagged DAT molecules, solubilized in Triton X-100, were coimmunoprecipitated. Thus, the 195-kDa complex was a homodimer. Cross-linking of DAT did not affect tyramine uptake. Replacement of Cys-306 with Ala prevented cross-linking. Replacement of all of the non-disulfide-bonded cysteines in the extracellular and membrane domains, except for Cys-306, did not prevent cross-linking. We conclude that the cross-link is between Cys-306 at the extracellular end of TM6 in each of the two DATs. The motif GVXXGVXXA occurs at the intracellular end of TM6 in DAT and is found in a number of other neurotransmitter transporters. This sequence was originally found at the dimerization interface in glycophorin A, and it promotes dimerization in model systems. Mutation of either glycine disrupted DAT expression and function. The intracellular end of TM6, like the extracellular end, is likely to be part of the dimerization interface.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. 19800684

    The aim of this study was to engineer a biomaterial capable of supporting vascularization in vitro and in vivo. We covalently immobilized vascular endothelial growth factor (VEGF) and Angiopoietin-1 (Ang1) onto three-dimensional porous collagen scaffolds using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) chemistry. Over both 3 and 7 days in vitro, seeded endothelial cells (ECs) had increased proliferation on scaffolds with immobilized VEGF and/or Ang1 compared to unmodified scaffolds and soluble growth factor controls. Notably, the group with co-immobilized VEGF and Ang1 showed significantly higher cell number (P=0.0079), higher overall lactate production rate (P=0.0044) and higher overall glucose consumption rate (P=0.0034) at Day 3, compared to its corresponding soluble control for which growth factors were added to culture medium. By Day 7, hematoxylin and eosin, live/dead, CD31, and von Willebrand factor staining all showed improved tube formation by ECs when cultivated on scaffolds with co-immobilized growth factors. Interestingly, scaffolds with co-immobilized VEGF and Ang1 showed increased EC infiltration in the chorioallantoic membrane (CAM) assay, compared to scaffolds with independently immobilized VEGF/Ang1. This study presents an alternative method for promoting the formation of vascular structures, via covalent immobilization of angiogenic growth factors that are more stable than soluble ones and have a localized effect.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ECM595
  • Identification of the Na+/H+ exchanger 1 in dorsal root ganglion and spinal cord: its possible role in inflammatory nociception. 19248819

    mRNA and protein presence of Na+/H+ exchanger (NHE) 1 (NHE1) and 5 (NHE5) in dorsal root ganglion (DRG) and dorsal spinal cord as well as its possible role in three inflammatory nociception tests were determined. Local peripheral ipsilateral, but not contralateral, administration of NHE inhibitors 5-(N,N-dimethyl)amiloride hydrochloride (DMA, 0.3-30 microM/paw), 5-(N-ethyl-N-isopropyl)amiloride (EIPA, 0.3-30 microM/paw) and amiloride (0.1-10 microM/paw) significantly increased flinching but not licking behavior in the capsaicin and 5-HT tests. Moreover, DMA and EIPA (0.03-30 microM/paw) as well as amiloride (0.1-1 microM/paw) augmented, in a dose-dependent manner, 0.5% formalin-induced flinching behavior during phase II but not during phase I. Reverse transcription-polymerase chain reaction showed the expression of NHE1 and NHE5 in DRG and dorsal spinal cord. Western blot analysis confirmed the presence of NHE1 in DRG and spinal cord. Moreover, NHE5 was expressed in dorsal spinal cord, but not in DRG where a 45 kDa truncated isoform of NHE5 was identified. Collectively, these data suggest that NHE1, but not NHE5, plays an important role reducing inflammatory pain in rats.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AG345
    Nombre del producto:
    Na+/H+ Exchanger-1, Control Peptide for AB3081/AB3082
  • Targeted cancer gene therapy using a hypoxia inducible factor dependent oncolytic adenovirus armed with interleukin-4. 17638898

    There is a need for novel therapies targeting hypoxic cells in tumors. These cells are associated with tumor resistance to therapy and express hypoxia inducible factor-1 (HIF-1), a transcription factor that mediates metabolic adaptation to hypoxia and activates tumor angiogenesis. We previously developed an oncolytic adenovirus (HYPR-Ad) for the specific killing of hypoxic/HIF-active tumor cells, which we now armed with an interleukin-4 gene (HYPR-Ad-IL4). We designed HYPR-Ad-IL4 by cloning the Ad E1A viral replication and IL-4 genes under the regulation of a bidirectional hypoxia/HIF-responsive promoter. The IL-4 cytokine was chosen for its ability to induce a strong host antitumor immune response and its potential antiangiogenic activity. HYPR-Ad-IL4 induced hypoxia-dependent IL-4 expression, viral replication, and conditional cytolysis of hypoxic, but not normoxic cells. The treatment of established human tumor xenografts with HYPR-Ad-IL4 resulted in rapid and maintained tumor regression with the same potency as that of wild-type dl309-Ad. HYPR-Ad-IL4-treated tumors displayed extensive necrosis, fibrosis, and widespread viral replication. Additionally, these tumors contained a distinctive leukocyte infiltrate and prominent hypoxia. The use of an oncolytic Ad that locally delivers IL-4 to tumors is novel, and we expect that HYPR-Ad-IL4 will have broad therapeutic use for all solid tumors that have hypoxia or active HIF, regardless of tissue origin or genetic alterations.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB805
    Nombre del producto:
    Anti-Adenovirus (Blend) Coating Antibody, clone 2/6, and 20/11