Millipore Sigma Vibrant Logo
 

kinase


8878 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (6,060)
  • (2,099)
  • (10)
  • (8)
  • (6)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors. 21239475

    CHK2 is a checkpoint kinase involved in the ATM-mediated response to double-strand DNA breaks. Its potential as a drug target is still unclear, but inhibitors of CHK2 may increase the efficacy of genotoxic cancer therapies in a p53 mutant background by eliminating one of the checkpoints or DNA repair pathways contributing to cellular resistance. We report here the identification and characterization of a novel CHK2 kinase inhibitor, CCT241533. X-ray crystallography confirmed that CCT241533 bound to CHK2 in the ATP pocket. This compound inhibits CHK2 with an IC(50) of 3 nmol/L and shows minimal cross-reactivity against a panel of kinases at 1 μmol/L. CCT241533 blocked CHK2 activity in human tumor cell lines in response to DNA damage, as shown by inhibition of CHK2 autophosphorylation at S516, band shift mobility changes, and HDMX degradation. CCT241533 did not potentiate the cytotoxicity of a selection of genotoxic agents in several cell lines. However, this compound significantly potentiates the cytotoxicity of two structurally distinct PARP inhibitors. Clear induction of the pS516 CHK2 signal was seen with a PARP inhibitor alone, and this activation was abolished by CCT241533, implying that the potentiation of PARP inhibitor cell killing by CCT241533 was due to inhibition of CHK2. Consequently, our findings imply that CHK2 inhibitors may exert therapeutic activity in combination with PARP inhibitors.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-345
    Nombre del producto:
    Anti-p21/WAF1/Cip1 Antibody
  • TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes. 24898139

    Chromosomal instability can arise from defects in chromosome-microtubule attachment. Using a variety of drug treatments, we show that TAO1 kinase is required for ensuring the normal congression of chromosomes. Depletion of TAO1 reduces the density of growing interphase and mitotic microtubules in human cells, showing TAO1's role in controlling microtubule dynamics. We demonstrate the aneugenic nature of chromosome-microtubule attachment defects in TAO1-depleted cells using an error-correction assay. Our model further strengthens the emerging paradigm that microtubule regulatory pathways are important for resolving erroneous kinetochore-microtubule attachments and maintaining the integrity of the genome, regardless of the spindle checkpoint status.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MABC292
    Nombre del producto:
    Anti-TAOK1 Antibody (long isoform), clone TAO1_1.2_VMD
  • Persistent inhibition of oxygen-induced retinal neovascularization by anthrax lethal toxin. 21989728

    To evaluate the role of mitogen-activated protein kinase kinase (MKK) signaling in a mouse model of oxygen-induced retinopathy (OIR) that mimics retinopathy of prematurity (ROP).Postnatal day 7 mice were exposed to elevated oxygen for 5 days to induce retinopathy. Anthrax lethal toxin (LeTx), an MKK inhibitor, was injected into the vitreous after restoration to normoxia, and its effects on vascular growth were analyzed by whole mount immunofluorescence and confocal microscopy. Pericyte coverage was determined by PDGFR-β and α-SMA staining. Macrophage presence was determined by F4/80 staining. Vitreal cytokine secretion was measured by ELISA and multianalyte profiling.Intravitreal injection of LeTx over a restricted time interval after return to normoxic conditions blocked the progression of OIR. This block was independent of vascular endothelial growth factor (VEGF) release and did not alter the release of cytokines and growth factors associated with OIR. VEGFR2 expression and activation were similarly unaffected. LeTx had no statistically significant effect on macrophage recruitment. LeTx sensitivity correlated with vessel maturity, extent of hypoxia, and growth of the deep vascular plexus network.Correlation among pericyte coverage, deep vascular plexus growth, and hypoxia after LeTx treatment indicate immature vessels in a hypoxic environment are preferentially sensitive to LeTx-mediated MKK inhibition. The persistence of VEGF without concomitant induction of neovascular growth or revascularization of vaso-obliterated zones suggests MKK inhibition causes an inability of the cells that are present, or a failure to recruit cells able, to respond to proangiogenic stimuli. These results indicate the inhibition of MKK signaling presents a novel strategy for the inhibition of vascular retinopathies such as OIR and ROP.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB756P
    Nombre del producto:
    Anti-Collagen Antibody, Type IV
  • Activation of endogenous FAK via expression of its amino terminal domain in Xenopus embryos. 22880041

    The Focal Adhesion Kinase is a well studied tyrosine kinase involved in a wide number of cellular processes including cell adhesion and migration. It has also been shown to play important roles during embryonic development and targeted disruption of the FAK gene in mice results in embryonic lethality by day 8.5.Here we examined the pattern of phosphorylation of FAK during Xenopus development and found that FAK is phosphorylated on all major tyrosine residues examined from early blastula stages well before any morphogenetic movements take place. We go on to show that FRNK fails to act as a dominant negative in the context of the early embryo and that the FERM domain has a major role in determining FAK's localization at the plasma membrane. Finally, we show that autonomous expression of the FERM domain leads to the activation of endogenous FAK in a tyrosine 397 dependent fashion.Overall, our data suggest an important role for the FERM domain in the activation of FAK and indicate that integrin signalling plays a limited role in the in vivo activation of FAK at least during the early stages of development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-537
    Nombre del producto:
    Anti-FAK Antibody, clone 4.47
  • Association of nuclear-localized Nemo-like kinase with heat-shock protein 27 inhibits apoptosis in human breast cancer cells. 24816797

    Nemo-like kinase (NLK), a proline-directed serine/threonine kinase regulated by phosphorylation, can be localized in the cytosol or in the nucleus. Whether the localization of NLK can affect cell survival or cell apoptosis is yet to be disclosed. In the present study we found that NLK was mainly localized in the nuclei of breast cancer cells, in contrast to a cytosolic localization in non-cancerous breast epithelial cells. The nuclear localization of NLK was mediated through direct interaction with Heat shock protein 27 (HSP27) which further protected cancer cells from apoptosis. The present study provides evidence of a novel mechanism by which HSP27 recognizes NLK in the breast cancer cells and prevents NLK-mediated cell apoptosis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ABS485
  • Association between Lyn protein tyrosine kinase (p53/56lyn) and the beta subunit of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptors in a GM-CSF-de ... 7636265

    The role of the lyn product (p53/p56lyn), a membrane-associated protein tyrosine kinase in the signaling pathway used by granulocyte macrophage-CSFR (GM-CSFR) was investigated by using the GM-CSF-dependent human megakaryoblastic leukemia cell line M-07e. M-07e cells express GM-CSFR and are dependent on GM-CSF for survival and proliferation in vitro. Treatment with anti-lyn Abs coimmunoprecipitated, along with lyn product, the beta subunit of GM-CSFR and a phosphoprotein with a molecular mass of 120 kDa (p120) in the lysates of M-07e cells but not in the lysates of human monocyte-derived macrophages (HMDM) or human lymphoid leukemia cells. That the 120-kDa phosphoprotein coimmunoprecipitated by anti-lyn Abs is the beta subunit of GM-CSFR was confirmed in the immunoprecipitates (IP) of M-07e cells with the use of an agarose-conjugated anti-p-tyr mAb. The formation of GM-CSF/GM-CSFR/lyn signaling complexes was verified in an autoradiographic study with anti-lyn IP of M-07e cells that had been bound with 125I-labeled recombinant human (rh)GM-CSF. The p120 protein (beta subunit) was not detected in the IP of M-07e cells with anti-fyn or anti-PI3 Abs. A direct association of Lyn kinase with the beta subunit of GM-CSFR was illustrated with a reversed approach showing the recovery of Lyn protein in anti-beta (CRS1) but not anti-alpha IP of M-07e cells that had been starved for a prolonged period. Finally, the interaction of Lyn kinase with the GM-CSFR complexes was further corroborated using anti-GM-CSF (G133) mAb, which coimmunoprecipitated both the p120 beta subunit and lyn product in the lysates of M-07e cells that had been bound with rhGM-CSF before cell lysis. Removal of rhGM-CSF from culture medium for 10 to 12 h resulted in a marked decrease in lyn-associated kinase activity but not the beta subunit/lyn kinase complex formation. Taken together, our results showed that, in M-07e cells, Lyn protein tyrosine kinase (p53/p56lyn) is stably associated with a constitutively phosphorylated beta subunit of the GM-CSFR in a manner that seems to be independent of lyn kinase activity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-111
  • PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. 23256036

    Parkinson's disease genes PINK1 and parkin encode kinase and ubiquitin ligase, respectively. The gene products PINK1 and Parkin are implicated in mitochondrial autophagy, or mitophagy. Upon the loss of mitochondrial membrane potential (ΔΨm), cytosolic Parkin is recruited to the mitochondria by PINK1 through an uncharacterised mechanism - an initial step triggering sequential events in mitophagy. This study reports that Ser65 in the ubiquitin-like domain (Ubl) of Parkin is phosphorylated in a PINK1-dependent manner upon depolarisation of ΔΨm. The introduction of mutations at Ser65 suggests that phosphorylation of Ser65 is required not only for the efficient translocation of Parkin, but also for the degradation of mitochondrial proteins in mitophagy. Phosphorylation analysis of Parkin pathogenic mutants also suggests Ser65 phosphorylation is not sufficient for Parkin translocation. Our study partly uncovers the molecular mechanism underlying the PINK1-dependent mitochondrial translocation and activation of Parkin as an initial step of mitophagy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4
  • PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. 24901221

    Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4
  • Atypical protein kinase C phosphorylates IKKalphabeta in transformed non-malignant and malignant prostate cell survival. 18571841

    Mechanistic pathways involving atypical protein kinase C-iota (aPKC-iota) have been targeted in various cancer cells such as lung cancer, brain and prostate due to PKCiota's antiapoptotic function, and role in cell proliferation and cell survival. In the current study, we examined the involvement of PKC-iota in the NF-kappaB pathway following treatment of prostate cells with the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha). Results demonstrated that androgen-independent DU-145 prostate carcinoma is insensitive to TNFalpha while transformed non-tumorigenic prostate RWPE-1 cells showed a slight sensitivity to TNFalpha. However, androgen-dependent LNCaP prostate cells are more sensitive to TNFalpha treatment and undergo apoptosis. Results demonstrated that in DU-145 cells, TNFalpha-induced PKC-iota in phosphorylation of IKKalphabeta. In RWPE-1 cells, PKC-zeta phosphorylates IKKalphabeta. Degradation of IkappaBalpha was observed in all three cell lines, allowing NF-kappaB/p65 translocation to the nucleus. Although, IKKalpha is weakly activated in LNCaP cells, the upstream kinase phosphorylation of IKKalphabeta via aPKCs was not observed. Hence, aPKCs may play a role in activation of NFkappaB pathway in prostate cancer cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    12-370
    Nombre del producto:
    Normal Rabbit IgG
  • Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. 16339969

    Strict regulation of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathway is essential for maintaining balanced growth in multi-cellular organisms. Several negative regulators of the pathway have been identified which include Sprouty proteins. Mammalian cells express four Sprouty isoforms (Sprouty1-4) in an ERK-dependent manner. In this study, we have examined the molecular mechanisms by which Sprouty proteins elicit their inhibitory effects on the RTK/ERK pathway, with special focus on the co-operation among Sprouty isoforms. The four mammalian Sprouty isoforms interact with each other, most probably to form hetero- as well as homo-oligomers through their C-terminal domains. Sprouty1 specifically interacts with Grb2, whereas Sprouty4 interacts with Sos1. Although any of the Sprouty isoforms by itself inhibits the fibroblast growth factor-2 (FGF-2)-induced activation of the ERK pathway significantly, hetero-oligomers show a more pronounced inhibitory activity. The hetero-oligomer formed between Sprouty1 and Sprouty4 exhibits the most potent inhibitory effect on ERK activation through its highly effective ability to suppress the association of Grb2-Sos1 complex with FRS2. The cooperative interactions observed among Sprouty isoforms could represent an advanced system that functions to regulate strictly the activation state of the RTK/ERK pathway in mammalian cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-203