Millipore Sigma Vibrant Logo
 

protein+detection


511 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (219)
  • (2)
  • (1)
  • (1)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR67-PSD-95 binding. 21757544

    Cellular prion protein (PrP(C)) is a glycosyl-phosphatidylinositol-anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrP(SC)) induces transmissible spongiform encephalopathies. In contrast, PrP(C) has a number of physiological functions in several neural processes. Several lines of evidence implicate PrP(C) in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrP(C) has been implicated in the inhibition of N-methyl-d-aspartic acid (NMDA)-mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnp(o/o)Jnk3(o/o) mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrP(C)-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrP(C) with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6-PSD-95 interaction after KA injections was favored by the absence of PrP(C). Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrP(C) against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    S7100
    Nombre del producto:
    ApopTag® Peroxidase In Situ Apoptosis Detection Kit
  • Oncogenicity of the developmental transcription factor Sox9. 22246670

    SOX9 [sex-determining region Y (SRY)-box 9 protein], a high mobility group box transcription factor, plays critical roles during embryogenesis and its activity is required for development, differentiation, and lineage commitment in various tissues including the intestinal epithelium. Here, we present functional and clinical data of a broadly important role for SOX9 in tumorigenesis. SOX9 was overexpressed in a wide range of human cancers, where its expression correlated with malignant character and progression. Gain of SOX9 copy number is detected in some primary colorectal cancers. SOX9 exhibited several pro-oncogenic properties, including the ability to promote proliferation, inhibit senescence, and collaborate with other oncogenes in neoplastic transformation. In primary mouse embryo fibroblasts and colorectal cancer cells, SOX9 expression facilitated tumor growth and progression whereas its inactivation reduced tumorigenicity. Mechanistically, we have found that Sox9 directly binds and activates the promoter of the polycomb Bmi1, whose upregulation represses the tumor suppressor Ink4a/Arf locus. In agreement with this, human colorectal cancers showed a positive correlation between expression levels of SOX9 and BMI1 and a negative correlation between SOX9 and ARF in clinical samples. Taken together, our findings provide direct mechanistic evidence of the involvement of SOX9 in neoplastic pathobiology, particularly, in colorectal cancer.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5535
    Nombre del producto:
    Anti-Sox9 Antibody
  • Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. 19125255

    Accumulation of hyperphosphorylated, ubiquitinated and N-terminally truncated TAR DNA-binding protein (TDP-43) is the pathological hallmark lesion in most familial and sporadic forms of FTLD-U and ALS, which can be subsumed as TDP-43 proteinopathies. In order to get more insight into the role of abnormal phosphorylation in the disease process, the identification of specific phosphorylation sites and the generation of phosphorylation-specific antibodies are mandatory. Here, we developed and characterized novel rat monoclonal antibodies (1D3 and 7A9) raised against phosphorylated S409/410 of TDP-43. These antibodies were used to study the presence of S409/410 phosphorylation by immunohistochemistry and biochemical analysis in a large series of 64 FTLD-U cases with or without motor neuron disease including familial cases with mutations in progranulin (n = 5), valosin-containing protein (n = 4) and linkage to chromosome 9p (n = 4), 18 ALS cases as well as other neurodegenerative diseases with concomitant TDP-43 pathology (n = 5). Our data demonstrate that phosphorylation of S409/410 of TDP-43 is a highly consistent feature in pathologic inclusions in the whole spectrum of sporadic and familial forms of TDP-43 proteinopathies. Physiological nuclear TDP-43 was not detectable with these mAbs by immunohistochemistry and by immunoblot analyses. While the accumulation of phosphorylated C-terminal fragments was a robust finding in the cortical brain regions of FTLD-U and ALS, usually being much more abundant than the phosphorylated full-length TDP-43 band, spinal cord samples revealed a predominance of full-length TDP-43 over C-terminal fragments. This argues for a distinct TDP-43 species composition in inclusions in cortical versus spinal cord cells. Overall, these mAbs are powerful tools for the highly specific detection of disease-associated abnormal TDP-43 species and will be extremely useful for the neuropathological routine diagnostics of TDP-43 proteinopathies and for the investigation of emerging cellular and animal models for TDP-43 proteinopathies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MABN14
  • Identification of a dominant negative functional domain on DAPK-1 that degrades DAPK-1 protein and stimulates TNFR-1-mediated apoptosis. 17324927

    DAPK-1 is a stress-activated tumor suppressor protein that plays a role in both proapoptotic or antiapoptotic signal transduction pathways. To define mechanisms of DAPK-1 protein regulation, we have determined that DAPK-1 protein has a long half-life, and therefore its activity is primarily regulated at the protein level. Changes in DAPK-1 protein levels occur by a cathepsin B-dependent pathway, prompting us to evaluate whether cathepsin B plays positive or negative role in DAPK-1 function. The transfection of p55-TNFR-1 induced complex formation between DAPK-1 and cathepsin B. Depletion of cathepsin B protein using small interfering RNA stimulated TNFR-1 dependent apoptosis. The minimal binding region on DAPK-1 for cathepsin B was mapped to amino acids 836-947. The transfection of the DAPK-1-(836-947) miniprotein acted in a dominant negative manner inducing endogenous DAPK-1 protein degradation in a TNFR-1-dependent manner. These data suggest that DAPK-1 forms a multiprotein survival complex with cathepsin B countering the rate of TNFR-1-dependent apoptosis and highlights the importance of developing DAPK-1 inhibitors as agents to sensitize cells to stress-induced apoptosis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    S7111
    Nombre del producto:
    ApopTag® Plus In Situ Apoptosis Fluorescein Detection Kit
  • Protein kinase D1 mediates stimulation of DNA synthesis and proliferation in intestinal epithelial IEC-18 cells and in mouse intestinal crypts. 21051537

    We examined whether protein kinase D1 (PKD1), the founding member of a new protein kinase family, plays a critical role in intestinal epithelial cell proliferation. Our results demonstrate that PKD1 activation is sustained, whereas that of PKD2 is transient in intestinal epithelial IEC-18 stimulated with the G(q)-coupled receptor agonists angiotensin II or vasopressin. PKD1 gene silencing utilizing small interfering RNAs dramatically reduced DNA synthesis and cell proliferation in IEC-18 cells stimulated with G(q)-coupled receptor agonists. To clarify the role of PKD1 in intestinal epithelial cell proliferation in vivo, we generated transgenic mice that express elevated PKD1 protein in the intestinal epithelium. Transgenic PKD1 exhibited constitutive catalytic activity and phosphorylation at the activation loop residues Ser(744) and Ser(748) and on the autophosphorylation site, Ser(916). To examine whether PKD1 expression stimulates intestinal cell proliferation, we determined the rate of crypt cell DNA synthesis by detection of 5-bromo-2-deoxyuridine incorporated into the nuclei of crypt cells of the ileum. Our results demonstrate a significant increase (p less than 0.005) in DNA-synthesizing cells in the crypts of two independent lines of PKD1 transgenic mice as compared with non-transgenic littermates. Morphometric analysis showed a significant increase in the length and in the total number of cells per crypt in the transgenic PKD1 mice as compared with the non-transgenic littermates (p less than 0.01). Thus, transgenic PKD1 signaling increases the number of cells per crypt by stimulating the rate of crypt cell proliferation. Collectively, our results indicate that PKD1 plays a role in promoting cell proliferation in intestinal epithelial cells both in vitro and in vivo.
    Tipo de documento:
    Referencia
    Referencia del producto:
    04-787
  • Nuclear translation visualized by ribosome-bound nascent chain puromycylation. 22472439

    Whether protein translation occurs in the nucleus is contentious. To address this question, we developed the ribopuromycylation method (RPM), which visualizes translation in cells via standard immunofluorescence microscopy. The RPM is based on ribosome-catalyzed puromycylation of nascent chains immobilized on ribosomes by antibiotic chain elongation inhibitors followed by detection of puromycylated ribosome-bound nascent chains with a puromycin (PMY)-specific monoclonal antibody in fixed and permeabilized cells. The RPM correlates localized translation with myriad processes in cells and can be applied to any cell whose translation is sensitive to PMY. In this paper, we use the RPM to provide evidence for translation in the nucleoplasm and nucleolus, which is regulated by infectious and chemical stress.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MABE343
    Nombre del producto:
    Anti-Puromycin Antibody, clone 12D10
  • Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. 17376413

    Gender and diet have an important effect in cardiovascular disease and other aging-associated disorders, whose initiation and/or worsening seem to be delayed in females from different species and in animals subjected to caloric restriction (CR). The aim of the present study was to investigate whether cardiac muscle bioenergetic mitochondrial features could be responsible for these beneficial effects.
    Tipo de documento:
    Referencia
    Referencia del producto:
    S7150
    Nombre del producto:
    OxyBlot Protein Oxidation Detection Kit
  • Identification of potential bladder cancer markers in urine by abundant-protein depletion coupled with quantitative proteomics. 23631828

    In this study, we evaluated the reproducibility of abundant urine protein depletion by hexapeptide-based library beads and an antibody-based affinity column using the iTRAQ technique. The antibody-based affinity-depletion approach, which proved superior, was then applied in conjunction with iTRAQ to discover proteins that were differentially expressed between pooled urine samples from hernia and bladder cancer patients. Several proteins, including seven apolipoproteins, TIM, SAA4, and proEGF were further verified in 111 to 203 individual urine samples from patients with hernia, bladder cancer, or kidney cancer. Six apolipoproteins (APOA1, APOA2, APOB, APOC2, APOC3, and APOE) were able to differentiate bladder cancer from hernia. SAA4 was significantly increased in bladder cancer subgroups, whereas ProEGF was significantly decreased in bladder cancer subgroups. Additionally, the combination of SAA4 and ProEGF exhibited higher diagnostic capacity (AUC=0.80 and p<0.001) in discriminating bladder cancer from hernia than either marker alone. Using MetaCore software to interpret global changes of the urine proteome caused by bladder cancer, we found that the most notable alterations were in immune-response/alternative complement and blood-coagulation pathways. This study confirmed the clinical significance of the urine proteome in the development of non-invasive biomarkers for the detection of bladder cancer.In this study, we evaluated the reproducibility of abundant urine protein depletion by hexapeptide-based library beads and an antibody-based affinity column using the iTRAQ technique. The antibody-based affinity-depletion approach, which proved superior, was then applied in conjunction with iTRAQ to discover proteins that were differentially expressed between pooled urine samples from hernia and bladder cancer patients. Several proteins, including seven apolipoproteins, TIM, SAA4, and proEGF were further verified in 111 to 203 individual urine samples from patients with hernia, bladder cancer, or kidney cancer. SAA4 was significantly increased in bladder cancer subgroups, whereas ProEGF was significantly decreased in bladder cancer subgroups. Additionally, the combination of SAA4 and ProEGF exhibited higher diagnostic capacity in discriminating bladder cancer from hernia than either marker alone. A marker panel composed by two novel biomarker candidates, SAA4 and proEGF, was first discovered and verified successfully using Western blotting. To the best of our knowledge, the associations of urinary SAA4 and proEGF with bladder tumor and kidney cancer have not been mentioned before. In the present study, we discovered and verified SAA4 and proEGF as potential bladder cancer biomarker for the first time.
    Tipo de documento:
    Referencia
    Referencia del producto:
    APOMAG-62K
    Nombre del producto:
    MILLIPLEX MAP Human Apolipoprotein Magnetic Bead Panel - Cardiovascular Disease Multiplex Assay
  • Monoclonal antibody detection of CD46 clustering beneath Neisseria gonorrhoeae microcolonies 16552073

    CD46 (membrane cofactor protein), a complement-regulatory protein that participates in innate and acquired immunity, also serves as a receptor for viral and bacterial pathogens. CD46 isoforms terminate in one of two cytoplasmic tails, Cyt1 or Cyt2, which differ in signaling and trafficking properties. Dissecting the functions of the two cytoplasmic tails in these cellular processes has been hampered by the absence of specific reagents. Here we report the construction of Cyt1- and Cyt2-specific monoclonal antibodies (MAbs). These MAbs recognize unique epitopes within the tails and can be used for immunofluorescence microscopy, immunoblotting, and immunoprecipitation. Studies of Neisseria gonorrhoeae-infected cells with the CD46 tail MAbs demonstrate the differential recruitment of Cyt1 and Cyt2 to the cortical plaque.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Prion protein oligomers in Creutzfeldt-Jakob disease detected by gel-filtration centrifuge columns. 19389076

    Prion diseases are diagnosed by the detection of accumulation of abnormal prion protein (PrP) using immunohistochemistry or the detection of protease-resistant abnormal PrP (PrP(res)). Although the abnormal PrP is neurotoxic by forming aggregates, recent studies suggest that the most infectious units are smaller than the amyloid fibrils. In the present study, we developed a simplified method by applying size-exclusion gel-filtration chromatography to examine PrP oligomers without proteinase K digestion in Creutzfeldt-Jakob disease (CJD) samples, and evaluated the correlation between disease severity and the polymerization degree of PrP. Brain homogenates of human CJD and non-CJD cases were applied to the gel-filtration spin columns, and fractionated PrP molecules in each fraction were detected by western blot. We observed that PrP oligomers could be detected by the simple gel-filtration method and distinctly separated from monomeric cellular PrP (PrP(c)). PrP oligomers were increased according to the disease severity, accompanied by the depletion of PrP(c). The separated PrP oligomers were already protease-resistant in the case with short disease duration. In the cases with quite severe pathology the oligomeric PrP reached a plateau, which may indicate that PrP molecules could mostly develop into amyloid fibrils in the advanced stages. The increase of PrP oligomers correlated with the degree of histopathological changes such as spongiosis and gliosis. The decrease of monomeric PrP(c) was unexpectedly obvious in the diseased cases. Dynamic changes of both oligomerization of the human PrP and depletion of normal PrP(c) require further elucidation to develop a greater understanding of the pathogenesis of human prion diseases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AP192P
    Nombre del producto:
    Donkey Anti-Mouse IgG Antibody, HRP conjugate, Species Adsorbed