Millipore Sigma Vibrant Logo
 

ED1


139 Results Erweiterte Suche  
Suchergebnisse
Dokumente (131)
Seiten (0)

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (103)
  • (28)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. 3882559

    In the present study, a set of three monoclonal antibodies is described, each of which recognizes cells of the monocyte-macrophage lineage in the rat. The tissue distribution, in particular in lymphoid organs, of each of the three monoclonals is determined by immunoenzyme histochemistry on cryostat sections, as well as on cell suspensions. Results show that ED1 recognizes a cytoplasmic antigen in monocytes and in most macrophages, free and fixed. ED2 and ED3 recognize membrane antigens of tissue macrophages, discriminating between distinct subpopulations of macrophages, each with a characteristic localization in the compartments of lymphoid organs. No other cell types except cells of the mononuclear phagocyte system are positive for any of the three monoclonals. Possible relations between the macrophages recognized by this set of monoclonals and dendritic cells are discussed.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1435
    Produktbezeichnung:
    Anti-Macrophages/Monocytes Antibody, clone ED-1
  • Big ET-1 processing into vasoactive peptides in arteries and veins. 17904426

    The endothelin (ET) peptides are more potent in contracting veins than arteries. The precursor big ET-1 is metabolized by endothelin converting enzyme [ECE; to ET-1 (1-21)], matrix metalloproteases [MMPs; to ET-1 (1-32)] and chymase [to ET-1(1-31)]. We hypothesized that arteries and veins were differently dependent in conversion of big ET-1 to vasoconstrictors. Immunohistochemical, western, zymographic and isometric contractile assays in rat aorta and vena cava were used. Big ET-1 contracted aorta [60+/-17% phenylephrine contraction] but was more efficacious in vena cava [478+/-61% norepinephrine contraction]. ECE and its product ET-1(1-21) were detected in aorta and vena cava, and the ECE inhibitors phosphoramidon and CGS-26393 reduced big ET-1-induced contraction. ET-1 (1-32) contracted aorta and vena cava but inhibition of MMPs with minocycline or GM6001 did not reduce big ET-1-induced contraction; zymography confirmed active tissue MMPs. Aorta and vena cava contracted to the product of chymase, ET-1 (1-31). Chymase was detected in aorta and only weakly in vena cava. Inhibition of chymase (chymostatin, 100 muM) reduced arterial (19% control) but not venous constriction to big ET-1. These results suggest at least one potential significant difference - the role of chymase - in in vitro enzymatic processing of big ET-1 in arteries and veins.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB3308
    Produktbezeichnung:
    Anti-MMP-2 Antibody, a.a. 468-483 hMMP2, clone 42-5D11
  • EHD1 regulates beta1 integrin endosomal transport: effects on focal adhesions, cell spreading and migration. 17284518

    beta1 integrins bind to the extracellular matrix and stimulate signaling pathways leading to crucial cellular functions, including proliferation, apoptosis, cell spreading and migration. Consequently, control of beta1 integrin function depends upon its subcellular localization, and recent studies have begun to unravel the complex regulatory mechanisms involved in integrin trafficking. We report that the C-terminal Eps15-homology (EH) domain-containing protein EHD1 plays an important role in regulating beta1 integrin transport. Initially, we demonstrated that RNAi-knockdown of Ehd1 results in impaired recycling of beta1 integrins and their accumulation in a transferrin-containing endocytic recycling compartment. Mouse embryonic fibroblast (MEF) cells derived from EHD1-knockout mice (Ehd1(-/-) MEF) exhibited lower overall levels of beta1 integrins on the plasma membrane, but higher cell-surface-expressed activated beta1 integrins, and larger, more prominent focal adhesions resulting from slower kinetics of focal adhesion disassembly. In addition, both migration and cell spreading on fibronectin were impaired in Ehd1(-/-) MEF cells, and these defects could be similarly induced by EHD1-RNAi treatment of normal Ehd1(+/+) MEF cells. They could also be rescued by transfection of wild-type EHD1 into Ehd1(-/-) MEF cells. Our data support a role for EHD1 in beta1 integrin recycling, and demonstrate a requirement for EHD1 in integrin-mediated downstream functions.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1997
    Produktbezeichnung:
    Anti-Integrin β1 Antibody, clone MB1.2
  • Activation of ETB receptors regulates the abundance of ET-1 mRNA in vascular endothelial cells. 18278064

    BACKGROUND AND PURPOSE: The factors that influence the cellular levels of endothelin-1 (ET-1) include transcription, mRNA localization, stability and translation, post-translational maturation of preproET-1 and degradation of ET-1. We investigated the regulation of ET-1 mRNA abundance by extracellular ET-1 in porcine aortic endothelial cells (PAECs). EXPERIMENTAL APPROACH: Passsage one cultures of PAECs were incubated in starving medium in the presence or absence of ET-1 and antagonists or pharmacological inhibitors. PreproET-1 mRNA, endothelin-1 promoter activity, Erk and p38 MAPK activation were determined. KEY RESULTS: Exogenous ET-1 reduced cellular ET-1 mRNA content: a reduction of 10 000-fold was observed after 4 h. ET-1 simultaneously reduced the stability of ET-1 mRNA and increased the loading of RNA Polymerase II at the endothelin-1 promoter. In the absence of exogenous ET-1, the ETB-selective antagonist, BQ788, increased ET-1 mRNA. An ETA-selective antagonist had no effect. ET-1 mRNA returned to control levels within 24 h. Whereas activation of p38 MAPK induced by ET-1 peaked at 30 min and returned to control levels within 90 min, Erk1/2 remained active after 4 h of stimulation. Inhibition of p38 MAPK prevented the ET-1-induced decrease in ET-1 mRNA. In contrast, Erk1/2 inhibition increased ET-1 mRNA. Similarly, inhibition of receptor internalization increased ET-1 mRNA in the presence or absence of exogenous ET-1.Conclusions and implications:These results suggest that extracellular ET-1 regulates the abundance of ET-1 mRNA in PAECs, in an ETB receptor-dependent manner, by modulating both mRNA stability and transcription via mechanisms involving receptor endocytosis and both ERK and p38 MAPK pathways.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    12-370
    Produktbezeichnung:
    Normal Rabbit IgG
  • Heterogeneity of macrophages in the rat evidenced by variability in determinants: two new anti-rat macrophage antibodies against a heterodimer of 160 and 95 kd (CD11/CD18 ... 2572659

    A set of three monoclonal antibodies (MoAbs), ED1, ED2, and ED3, has been shown to recognize in situ different subsets of macrophages in the rat. This macrophage diversity can be correlated with differences in stage of differentiation of cells belonging to one lineage. The present study quantifies this antigen distribution in the macrophage fractions of several lymphoid organs provided by Percoll centrifugation. Four new MoAbs (ED4, ED7, ED8, and ED9) raised against macrophages are included in this study. The tissue distribution of each of the four new MoAbs is determined by immuno- and enzyme-histochemistry on cryostat sections. The MoAbs recognize distinct subpopulations of macrophages. The new MoAbs ED4, ED7, ED8, and ED9 recognize granulocytes and other unrelated cell types, as well as cells of the mononuclear phagocyte system. ED7 and ED8 recognize a surface heterodimer of Mr 160,000 and 95,000.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Repetitive, negligible force reaching in rats induces pathological overloading of upper extremity bones. 14606516

    Work-related repetitive motion disorders are costly. Immunohistochemical changes in bones resulting from repetitive reaching and grasping in 17 rats were examined. After 3-6 weeks, numbers of ED1+ macrophages and osteoclasts increased at periosteal surfaces of sites of muscle and interosseous membrane attachment and metaphyses of reach and nonreach forelimbs. These findings indicate pathological overloading leading to inflammation and subsequent bone resorption. INTRODUCTION: Sixty-five percent of all occupational illnesses in U.S. private industry are attributed to musculoskeletal disorders arising from the performance of repeated motion, yet the precise mechanisms of tissue pathophysiology have yet to be determined for work-related musculoskeletal disorders. This study investigates changes in upper extremity bone tissues resulting from performance of a voluntary highly repetitive, negligible force reaching and grasping task in rats. MATERIALS AND METHODS: Seventeen rats reached an average of 8.3 times/minute for 45-mg food pellets for 2 h/day, 3 days/week for up to 12 weeks. Seven rats served as normal or trained controls. Radius, ulna, humerus, and scapula were collected bilaterally as follows: radius and ulna at 0, 3, 4, 5, 6, and 12 weeks and humerus and scapula at 0, 4, and 6 weeks. Bones were examined for ED1-immunoreactive mononuclear cells and osteoclasts. Double-labeling immunohistochemistry was performed for ED1 (monocyte/macrophage lineage cell marker) and TRACP (osteoclast marker) to confirm that ED1+ multinucleated cells were osteoclasts. Differences in the number of ED1+ cells over time were analyzed by ANOVA. RESULTS: Between 3 and 6 weeks of task performance, the number of ED1+ mononuclear cells and osteoclasts increased significantly at the periosteal surfaces of the distal radius and ulna of the reach and nonreach limbs compared with control rats. These cells also increased at periosteal surfaces of humerus and scapula of both forelimbs by 4-6 weeks. These cellular increases were greatest at muscle attachments and metaphyseal regions, but they were also present at some interosseous membrane attachments. The number of ED1+ cells decreased to control levels in radius and ulna by 12 weeks. CONCLUSIONS: Increases in ED1+ mononuclear cells and osteoclasts indicate that highly repetitive, negligible force reaching causes pathological overloading of bone leading to inflammation and osteolysis of periosteal bone tissues.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1435
    Produktbezeichnung:
    Anti-Macrophages/Monocytes Antibody, clone ED-1
  • Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. 7932870

    The ED1 monoclonal antibody recognizes an antigen in lysosomal membranes of phagocytes. The expression of this antigen in cells increases during phagocytic activity. Here we describe the expression of ED1-immunoreactivity during the various stages of both acute (monophasic) and chronic relapsing experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. During the first attack of acute and chronic relapsing EAE, ED1-immunoreactivity was present in macrophages and in cells which displayed morphologic features of activated microglial cells (i.e., cells with thick short processes). At the ultrastructural level these cells were seen to contain phagocytosed myelin structures in lysosomes. ED1-immunoreactivity in these cells was present in the cytoplasm near lysosomes. During the remission phase of acute EAE and the relapse phase of chronic relapsing EAE, ED1-positive cells with dendritic morphology not only were present in or nearby lesions, but were also found at sites distant from lesions throughout large parts of the brain. These cells had a morphology comparable to microglial cells in normal brain. A major difference between animals which were in remission and animals which on day 25 were suffering from a relapse, was that the latter showed the presence of lesions with darkly stained round ED1-positive macrophages and activated microglial cells. These results indicate that during a relapse, newly recruited blood-borne macrophages infiltrate the brain and, together with activated lymphocytes and microglial cells, recommence a new demyelination process.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1435
    Produktbezeichnung:
    Anti-Macrophages/Monocytes Antibody, clone ED-1
  • Different glial reactions to hippocampal stab wounds in young adult and aged rats. 12586848

    Brain injury induces reactive gliosis. To examine the activation of glial cells after brain injury in young versus aged rats, we used a brain stab-wound model and examined the expression of cells positive for ED1 (ED1(+)) and glial fibrillary acidic protein (GFAP(+)) in the hippocampus in young-mature (3 months) and aged (25 months) Wistar rats at various times following hippocampal stab injury. ED1(+) cells appeared more frequently in the aged rats than in the young-mature rats under control conditions, whereas the number of GFAP(+) cells was not different between two groups. Following the stab wound, there was an increase in ED1 expression that was delayed but stronger in the aged rats and that persisted longer; the increase of the number of GFAP(+) cells also persisted longer. We conclude that different glial reactivity in the aged brain suggests that aging is associated with increased glial responsiveness that may enhance susceptibility to injury and disease in the brain.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB3402
    Produktbezeichnung:
    Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5
  • Osteoclasts differentiate from resident precursors in an in vivo model of synchronized resorption: a temporal and spatial study in rats. 11062348

    Osteoclasts differentiate from mononucleated precursors expressing monocyte markers, which gradually evolve to preosteoclasts expressing the osteoclast phenotype. Although the role of osteogenic cells in these changes has been well documented in vitro, their contribution in vivo has not been established. In this study, a synchronized wave of resorption was activated along the mandibular periosteum. The periosteum adjacent to the bone surface studied was separated by a computer-assisted technique into an osteogenic alkaline phosphatase-positive compartment and an outer nonosteogenic compartment. Specific markers (nonspecific esterase [NSE], tartrate-resistant acid phosphatase [TRAP], and ED1 antibody, a marker of the monocyte-macrophage lineage) were used to follow osteoclast differentiation quantitatively as a function of time after activation of resorption, from day 0 to day 4 (peak of resorption in this model). Local cell proliferation was assessed in parallel. Between day 0 and day 3, the thickness of the osteogenic compartment decreased by 50% (p 0.0002). In the osteogenic compartment, proliferating cell numbers fell by 80% at 12 day, NSE(+) cells (located farthest from the bone surface) increased 3. 9-fold on day 4 vs. day 0 (p 0.005), ED1(+) cells decreased between day 0 and day 2 (p 0.02) before returning to their initial value, and TRAP(+) cells increased 2.7-fold between day 1 and day 3 (p 0.0005). Resorption was absent in the site studied on day 0, but on day 4 there were 20.5 osteoclast nuclei per millimeter of bone surface. The cell ratio changed from 30.3 NSE(+) and ED1(+) (some of which were also TRAP(+)) cells per millimeter on day 0 to 37.6 mononucleated cells plus 20.5 osteoclast nuclei on day 4. In the nonosteogenic compartment, an entry of ED1(+)/NSE(-) was observed on 12 day (+23 cells, p 0.02 vs. day 0). This was followed by a return of ED1(+) cell numbers to the control level on day 1, and a transient increase in NSE(+) cells (+47% on day 2 vs. day 1, p 0.02). TRAP(+) cells were never seen in this compartment. Proliferating cell numbers did not change throughout the study. Our results strongly suggest that the osteoclasts present on day 4 differentiated from the pool of TRAP(+), ED1(+), and NSE(+) cells present at the site on day 0. The osteogenic compartment was gradually replenished by cells migrating from the nonosteogenic compartment, which was supplemented by ED1(+) cells recruited from the circulation early after activation. Moreover, osteogenic cells appeared to be as crucial in vivo for the acquisition of the TRAP phenotype as previously shown in vitro.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1435
    Produktbezeichnung:
    Anti-Macrophages/Monocytes Antibody, clone ED-1
  • Early focal expression of the chemokine Ccl2 by Müller cells during exposure to damage-inducing bright continuous light. 21228381

    To investigate the time course and localization of Ccl2 expression and recruitment of inflammatory cells associated with light-induced photoreceptor degeneration.Sprague-Dawley (SD) rats were exposed to 1000 lux light for up to 24 hours, after which some animals were allowed to recover in dim light (5 lux) for 3 or 7 days. During and after exposure to light, the animals were euthanatized and the retinas processed. Ccl2 expression was assessed by qPCR, immunohistochemistry, and in situ hybridization at each time point. Counts were made of perivascular monocytes/microglia immunolabeled with ED1, and photoreceptor apoptosis was assessed with TUNEL.Upregulation of Ccl2 expression was evident in the retina by 12 hours of exposure and correlated with increased photoreceptor death. Ccl2 expression reached its maximum at 24 hours, coinciding with peak cell death. Immunohistochemistry and in situ hybridization showed that Ccl2 is expressed by Müller cells from 12 hours of exposure, most intensely in the superior retina, in the region of the incipient light-induced lesion. After the Müller cell-driven expression of Ccl2, there was a substantial recruitment of monocytes to the local retina and choroidal vasculature. This coincided spatially with the expression of Ccl2 in the superior retina. Peak monocyte infiltration followed maximum Ccl2 expression by up to 3 days. Furthermore, Ccl2 immunoreactivity was observed in many infiltrating monocytes after a 24-hour exposure.The data indicate that photoreceptor death promotes region-specific expression of Ccl2 by Müller cells, which facilitates targeting of monocytes to sites of injury. The data suggest that recruitment of monocytes to developing lesions is secondary to signaling events in the retina.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere