Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
Manganese superoxide dismutase (MnSOD) expression has been found to be low in human pancreatic ductal adenocarcinoma (PDAC). Previously, we have reported that microRNA-301a (miR-301a) was found being upregulated via nuclear factor-κB (NF-κB) feedback loop in human PDAC. In this study, we investigate whether the miR-301a expression level is associated with MnSOD expression in human PDAC. We established a xenograft PDAC mouse model using transfected PanC-1 cells (miR-301a antisense or scrambled control) to investigate tumor growth and the interaction between MnSOD and miR-301a. The animal study indicated that miR-301a antisense transfection could significantly decrease the growth rate of inoculated PDAC cells, and this decrease in tumor growth rate is associated with increased MnSOD expression. To evaluate the MnSOD-miR-301a correlation in human PDAC, we have analyzed a total of 60 PDAC specimens, along with 20 normal pancreatic tissue (NPT) specimens. Human specimens confirmed a significant decrease of MnSOD expression in PDAC specimens (0.88±0.38) compared with NPT control (2.45±0.76; P<0.05), whereas there was a significant increase in miR-301a levels in PDAC specimens (0.89±0.28) compared with NPT control (0.25±0.41; P<0.05). We conclude that MnSOD expression is negatively associated with miR-301a levels in PDAC tissues, and lower miR-301a levels are associated with increased MnSOD expression and inhibition of PDAC growth.
Manganese ethylene-bis-dithiocarbamate (Mn-EBDC) is the major active element of maneb, a pesticide linked to parkinsonism in certain individuals upon chronic exposure. Additionally, it has been shown to produce dopaminergic neurodegeneration in mice systemically coexposed to another pesticide, 1,1'-dimethyl-4,4'-bipyridinium (paraquat). Here, we described a rat model in which selective dopaminergic neurodegeneration was produced by delivering Mn-EBDC directly to the lateral ventricles. After establishing this model, we tested whether Mn-EBDC provoked dopamine efflux in the striatum, a well-known phenomenon produced by the mitochondrial inhibitor 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that causes parkinsonism in humans, as well as in some animals. Finally, we investigated whether Mn-EBDC directly inhibited mitochondrial function in vitro using isolated brain mitochondria. Our data demonstrated that Mn-EBDC induced extensive striatal dopamine efflux that was comparable with that induced by MPP+, and that Mn-EBDC preferentially inhibited mitochondrial complex III. As mitochondrial dysfunction is pivotal in the pathogenesis of Parkinson's disease (PD), our results support the proposal that exposure to pesticides such as maneb, or other naturally occurring compounds that inhibit mitochondrial function, may contribute to PD development.
Iron-mediated oxidative stress has been implicated in the pathology of the neurodegenerative disease Friedreich ataxia (FRDA). Here, we show that normal upregulation of the stress defense protein manganese superoxide dismutase (MnSOD) fails to occur in FRDA fibroblasts exposed to iron. This impaired induction was observed at iron levels in which increased activation of the redox-sensitive factor NF-kappaB was absent. Furthermore, MnSOD induction could only be partially suppressed by antioxidants. We conclude that an NF-kappaB-independent pathway that may not require free radical signaling is responsible for the reduction of MnSOD induction. This impairment could constitute both a novel defense mechanism against iron-mediated oxidative stress in cells with mitochondrial iron overload and conversely, an alternative source of free radicals that could contribute to the disease pathology.