Millipore Sigma Vibrant Logo
 

Peroxiredoxin


72 Results Erweiterte Suche  
Suchergebnisse

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (34)
  • (33)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. 21674491

    Redox changes are observed in neurodegenerative diseases, ranging from increased levels of reactive oxygen/nitrogen species and disturbance of antioxidant systems, to nitro-oxidative damage. By reducing hydrogen peroxide, peroxynitrite, and organic hydroperoxides, peroxiredoxins (Prdxs) represent a major potential protective barrier against nitro-oxidative insults in the brain. While recent works have investigated the putative role of Prdxs in neurodegenerative disorders, less is known about their expression in the healthy brain. Here we used immunohistochemistry to map basal expression of Prdxs throughout C57BL/6 mouse brain. We first confirmed the neuronal localization of Prdx2-5 and the glial expression of Prdx1, Prdx4, and Prdx6. Then we performed an in-depth analysis of neuronal Prdx distribution in the brain. Our results show that Prdx2-5 are widely detected in the different neuronal populations, and especially well expressed in the olfactory bulb, in the cerebral cortex, in pons nuclei, in the red nucleus, in all cranial nerve nuclei, in the cerebellum, and in motor neurons of the spinal cord. In contrast, Prdx expression is very low in the dopaminergic neurons of substantia nigra pars compacta and in the CA1/2 pyramidal cells of hippocampus. This low basal expression may contribute to the vulnerability of these neurons to nitro-oxidative attacks occurring in Parkinson's disease and Alzheimer's disease. In addition, we found that Prdx expression levels are unevenly distributed among neurons of a determined region and that distinct regional patterns of expression are observed between isoforms, reinforcing the hypothesis of the nonredundant function of Prdxs.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-609
  • Peroxiredoxin 6 differentially regulates acute and chronic cigarette smoke–mediated lung inflammatory response and injury. 20939758

    Peroxiredoxin 6 (Prdx6) exerts its protective role through peroxidase activity against H₂O₂ and phospholipid hydroperoxides. We hypothesized that targeted disruption of Prdx6 would lead to enhanced susceptibility to cigarette smoke (CS)-mediated lung inflammation and/or emphysema in mouse lung. Prdx6 null (Prdx6⁻/⁻mice exposed to acute CS showed no significant increase of inflammatory cell influx or any alterations in lung levels of proinflammatory cytokines compared to wild-type (WT) mice. Lung levels of antioxidant enzymes were significantly increased in acute CS-exposed Prdx6⁻/⁻ compared to WT mice. Overexpressing (Prdx6⁻/⁻) mice exposed to acute CS showed significant decrease in lung antioxidant enzymes associated with increased inflammatory response compared to CS-exposed WT mice or air-exposed Prdx6⁻/⁻ mice. However, chronic 6 months of CS exposure resulted in increased lung inflammatory response, mean linear intercept (Lm), and alteration in lung mechanical properties in Prdx6⁻/⁻ when compared to WT mice exposed to CS. These data show that targeted disruption of Prdx6 does not lead to increased lung inflammatory response but is associated with increased antioxidants, suggesting a critical role of lung Prdx6 and several compensatory mechanisms during acute CS-induced adaptive response, whereas this protection is lost in chronic CS exposure leading to emphysema.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-984
    Produktbezeichnung:
    Anti-Mn-SOD Antibody
  • Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated with tumor necrosis factor-alpha. 14597634

    Tumor necrosis factor-alpha (TNF-alpha) induces the activation of all three types of mitogen-activated protein kinase (MAPK): c-Jun NH(2)-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). This cytokine also induces the production of several types of reactive oxygen species, including H(2)O(2). With the use both of HeLa cells expressing wild-type or dominant negative forms of the cytosolic peroxidase peroxiredoxin II and of mouse embryonic fibroblasts deficient in this protein, we evaluated the roles of H(2)O(2) in the activation of MAPKs by TNF-alpha. In vitro kinase assays as well as immunoblot analysis with antibodies specific for activated MAPKs indicated that H(2)O(2) produced in response to TNF-alpha potentiates the activation of JNK and p38 induced by this cytokine but inhibits that of ERK. Our results also suggest that cytosolic peroxiredoxins are important regulators of TNF signaling pathways.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Selective association of peroxiredoxin 1 with genomic DNA and COX-2 upstream promoter elements in estrogen receptor negative breast cancer cells. 20631257

    In a search for proteins differentially cross-linked to DNA by cisplatin or formaldehyde in normal breast epithelial and breast cancer cell lines, we identified peroxiredoxin 1 (PRDX1) as a protein preferentially cross-linked to DNA in estrogen receptor negative (ER-) MDA-MB-231 but not in estrogen receptor positive (ER+) MCF7 breast cancer cells. Indirect immunofluorescence microscopic analyses showed that PRDX1 was located in the cytoplasm and nucleus of normal and breast cancer cells, with nuclear PRDX1 associated with promyelocytic leukemia protein bodies. We demonstrated that PRDX1 association with the transcription factor nuclear factor-kappaB (NF-kappaB) in MDA-MB-231 but not in MCF7 cells contributed to PRDX1-selective recruitment to MDA-MB-231 genomic DNA. Furthermore, PRDX1 was associated with the cyclooxygenase (COX)-2 upstream promoter region at sites occupied by NF-kappaB in ER- but not in ER+ breast cancer cells. PRDX1 knockdown attenuated COX-2 expression by reducing NF-kappaB occupancy at its upstream promoter element in MDA-MB-231 but not in MCF7 cells. A phosphorylated form of PRDX1 was only present in ER- breast cancer cells. Because PRDX1 phosphorylation is known to inhibit its peroxidase activity and to promote PRDX1 oligomerization, we propose that PRDX1 acts as a chaperone to enhance the transactivation potential of NF-kappaB in ER- breast cancer cells.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-609
  • Mitochondrial peroxiredoxin 3 regulates sensory cell survival in the cochlea. 23626763

    This study delineates the role of peroxiredoxin 3 (Prx3) in hair cell death induced by several etiologies of acquired hearing loss (noise trauma, aminoglycoside treatment, age). In vivo, Prx3 transiently increased in mouse cochlear hair cells after traumatic noise exposure, kanamycin treatment, or with progressing age before any cell loss occurred; when Prx3 declined, hair cell loss began. Maintenance of high Prx3 levels via treatment with the radical scavenger 2,3-dihydroxybenzoate prevented kanamycin-induced hair cell death. Conversely, reducing Prx3 levels with Prx3 siRNA increased the severity of noise-induced trauma. In mouse organ of Corti explants, reactive oxygen species and levels of Prx3 mRNA and protein increased concomitantly at early times of drug challenge. When Prx3 levels declined after prolonged treatment, hair cells began to die. The radical scavenger p-phenylenediamine maintained Prx3 levels and attenuated gentamicin-induced hair cell death. Our results suggest that Prx3 is up-regulated in response to oxidative stress and that maintenance of Prx3 levels in hair cells is a critical factor in their susceptibility to acquired hearing loss.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    ABS16
    Produktbezeichnung:
    Anti-GAPDH Antibody
  • The antioxidant protein peroxiredoxin 4 is epigenetically down regulated in acute promyelocytic leukemia. 21283726

    The antioxidant peroxiredoxin (PRDX) protein family comprises 6 members, which are implicated in a variety of cellular responses, including growth factor signal transduction. PRDX4 resides in the endoplasmic reticulum (ER), where it locally controls oxidative stress by reducing H(2)O(2) levels. We recently provided evidence for a regulatory function of PRDX4 in signal transduction from a myeloid growth factor receptor, the granulocyte colony-stimulating factor receptor (G-CSFR). Upon activation, the ligand-induced G-CSFR undergoes endocytosis and routes via the early endosomes where it physically interacts with ER-resident PRDX4. PRDX4 negatively regulates G-CSFR mediated signaling. Here, we investigated whether PRDX4 is affected in acute myeloid leukemia (AML); genomic alterations and expression levels of PRDX4 were investigated. We show that genomic abnormalities involving PRDX4 are rare in AML. However, we find a strong reduction in PRDX4 expression levels in acute promyelocytic leukemia (APL) compared to normal promyelocytes and different molecular subtypes of AML. Subsequently, the possible role of DNA methylation and histone modifications in silencing of PRDX4 in APLs was investigated. We show that the reduced expression is not due to methylation of the CpG island in the promoter region of PRDX4 but correlates with increased trimethylation of histone 3 lysine residue 27 (H3K27me3) and lysine residue 4 (H3K4me3) at the transcriptional start site (TSS) of PRDX4, indicative of a bivalent histone code involved in transcriptional silencing. These findings suggest that the control of G-CSF responses by the antioxidant protein PRDX4 may be perturbed in APL.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-449
    Produktbezeichnung:
    Anti-trimethyl-Histone H3 (Lys27) Antibody