Millipore Sigma Vibrant Logo
 

muscarinic+acetylcholine+receptor


206 Results Erweiterte Suche  
Suchergebnisse
Dokumente (195)
Seiten (0)

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (128)
  • (60)
  • (7)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. 17440109

    The importance of acetylcholine as a neurotransmitter in the nervous system is well established, but little is yet known about its recently described role as an autocrine and paracrine hormone in a wide variety of nonneuronal cells. Consistent with the expression of acetylcholine in normal lung, small cell lung carcinoma (SCLC) synthesize and secrete acetylcholine, which acts as an autocrine growth factor through both nicotinic and muscarinic cholinergic mechanisms. The purpose of this study was to determine if interruption of autocrine muscarinic cholinergic signaling has potential to inhibit SCLC growth. Muscarinic receptor (mAChR) agonists caused concentration-dependent increases in intracellular calcium and mitogen-activated protein kinase (MAPK) and Akt phosphorylation in SCLC cell lines. The inhibitory potency of mAChR subtype-selective antagonists and small interfering RNAs (siRNAs) on acetylcholine-increased intracellular calcium and MAPK and Akt phosphorylation was consistent with mediation by M3 mAChR (M3R). Consistent with autocrine acetylcholine secretion stimulating MAPK and Akt phosphorylation, M3R antagonists and M3R siRNAs alone also caused a decrease in basal levels of MAPK and Akt phosphorylation in SCLC cell lines. Treatment of SCLC cells with M3R antagonists inhibited cell growth both in vitro and in vivo and also decreased MAPK phosphorylation in tumors in nude mice in vivo. Immunohistochemical staining of SCLC and additional cancer types showed frequent coexpression of acetylcholine and M3R. These findings suggest that M3R antagonists may be useful adjuvants for treatment of SCLC and, potentially, other cancers.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB305
    Produktbezeichnung:
    Anti-Choline Acetyltransferase Antibody, clone 1E6
  • M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells. 24023725

    HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (greater than 24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-519
    Produktbezeichnung:
    Anti-phospho-CREB (Ser133) Antibody
  • M2 and M3 muscarinic receptors are involved in enteric nerve-mediated contraction of the mouse ileum: Findings obtained with muscarinic-receptor knockout mouse. 17008557

    The involvement of muscarinic receptors in neurogenic responses of the ileum was studied in wild-type and muscarinic-receptor (M-receptor) knockout (KO) mice. Electrical field stimulation to the wild-type mouse ileum induced a biphasic response, a phasic and sustained contraction that was abolished by tetrodotoxin. The sustained contraction was prolonged for an extended period after the termination of electrical field stimulation. The phasic contraction was completely inhibited by atropine. In contrast, the sustained contraction was enhanced by atropine. Ileal strips prepared from M2-receptor KO mice exhibited a phasic contraction similar to that seen in wild-type mice and a sustained contraction that was larger than that in wild-type mice. In M3-receptor KO mice, the phasic contraction was smaller than that observed in wild-type mice. Acetylcholine exogenously administrated induced concentration-dependent contractions in strips isolated from wild-type, M2- and M3-receptor KO mice. However, contractions in M3-receptor KO mice shifted to the right. The sustained contraction was inhibited by capsaicin and neurokinin NK2 receptor antagonist, suggesting that it is mediated by substance P (SP). SP-induced contraction of M2-receptor KO mice did not differ from that of wild-type mice. SP immunoreactivity was located in enteric neurons, colocalized with M2 receptor immunoreactivity. These results suggest that atropine-sensitive phasic contraction is mainly mediated via the M3 receptor, and SP-mediated sustained contraction is negatively regulated by the M2 receptor at a presynaptic level.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB367
    Produktbezeichnung:
    Anti-Muscarinic Acetylcholine Receptor m2 Antibody, clone M2-2-B3
  • Muscarinic M2 and M1 receptors reduce GABA release by Ca2+ channel modulation through activation of PI3K/Ca2+ -independent and PLC/Ca2+ -dependent PKC. 17581851

    We measured pharmacologically isolated GABAergic currents from layer II/III neurons of the rat auditory cortex using patch-clamp recording. Activation of muscarinic receptors by muscarine (1 microM) or oxotremorine (10 microM) decreased the amplitude of electrically evoked inhibitory postsynaptic currents to about one third of their control value. Neither miniature nor exogenously evoked GABAergic currents were altered by the presence of muscarinic agonists, indicating that the effect was spike-dependent and not mediated postsynaptically. The presence of the N- or P/Q-type Ca(2+) channel blockers omega-conotoxin GVIA (1 microM) or omega-AgaTx TK (200 nM) greatly blocked the muscarinic effect, suggesting that Ca(2+)-channels were target of the muscarinic modulation. The presence of the muscarinic M(2) receptor (M(2)R) antagonists methoctramine (5 muM) or AF-DX 116 (1 microM) blocked most of the muscarinic evoked inhibitory postsynaptic current (eIPSC) reduction, indicating that M(2)Rs were responsible for the effect, whereas the remaining component of the depression displayed M(1)R-like sensitivity. Tissue preincubation with the specific blockers of phosphatidyl-inositol-3-kinase (PI(3)K) wortmannin (200 nM), LY294002 (1 microM), or with the Ca(2+)-dependent PKC inhibitor Gö 6976 (200 nM) greatly impaired the muscarinic decrease of the eIPSC amplitude, whereas the remaining component was sensitive to preincubation in the phospholipase C blocker U73122 (10 microM). We conclude that acetylcholine release enhances the excitability of the auditory cortex by decreasing the release of GABA by inhibiting axonal V-dependent Ca(2+) channels, mostly through activation of presynaptic M(2)Rs/PI(3)K/Ca(2+)-independent PKC pathway and-to a smaller extent-by the activation of M(1)/PLC/Ca(2+)-dependent PKC.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Muscarinic receptor-independent activation of cyclic adenosine monophosphate-dependent protein kinase in rostral ventrolateral medulla underlies the sympathoexcitatory ph ... 17438462

    As inhibitors of acetylcholinesterase, clinical presentations of poisoning from organophosphate compounds are generally believed to entail overstimulation by the accumulated acetylcholine on muscarinic receptors at peripheral and central synapses. That some patients still yielded to acute organophosphate poisoning despite repeated dosing of atropine suggests that cellular mechanisms that are independent of muscarinic receptor activation may also be engaged in organophosphate poisoning. The present study was undertaken to test the hypothesis that muscarinic receptor-independent activation of cyclic adenosine monophosphate-dependent protein kinase A (PKA) in rostral ventrolateral medulla (RVLM), a medullary site where sympathetic vasomotor tone originates and where the organophosphate poison mevinphos (Mev) acts, is involved in the cardiovascular responses exhibited during organophosphate intoxication. In Sprague-Dawley rats, microinjection bilaterally of Mev (10 nmol) into the RVLM significantly augmented PKA activity in ventrolateral medulla that was not antagonized by coadministration of an equimolar concentration (1 nmol) of atropine or selective muscarinic receptor type M1 (pirenzepine), M2 (methoctramine), M3 (4-diphenyl-acetoxy-N-dimethylpiperidinium), or M4 (tropicamide) inhibitor. Comicroinjection of two selective PKA antagonists (100 pmol), N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide and (9R,10S,12S)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolol[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-1][1,6]benzodiazocine-10-carboxylic acid, significantly blunted the initial sympathoexcitatory cardiovascular response and the accompanying augmentation of nitric oxide synthase (NOS I) expression in the ventrolateral medulla exhibited during Mev intoxication; the secondary sympathoinhibitory phase and associated elevation in NOS II expression were unaffected. We conclude that whereas a muscarinic receptor-independent augmentation of PKA activity in the ventrolateral medulla was manifested throughout acute Mev intoxication, this activation was preferentially involved in the sympathoexcitatory phase by an upregulation of NOS I expression.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    2752
    Produktbezeichnung:
    BrdU Cell Proliferation Kit
  • Muscarinic acetylcholine receptor localization and activation effects on ganglion response properties. 20042645

    PURPOSE: The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. METHODS: RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. RESULTS: RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. CONCLUSIONS: The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer\'s patients and the potential visual effects of anticholinergic treatments for ocular diseases.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Muscarinic acetylcholine receptor subtypes expressed by mouse bladder afferent neurons. 20394802

    Cell bodies of afferent neurons located in lumbosacral dorsal root ganglia (DRG) provide Adelta- and C-fibres to the urinary bladder, reporting bladder wall tension, volume and noxious stimuli. Recent studies suggested an involvement of muscarinic acetylcholine receptors (mAChRs) not only in detrusor contractility but also in modulating afferent function, and this has been linked to the beneficial effects of muscarinic antagonists in the treatment of overactive bladder. Here, we aimed to determine the inventory of mAChR subtypes expressed by bladder afferent neurons in the mouse. Bladder afferent neurons were identified by retrograde neuronal tracing using Fast Blue (FB) or 1, 1'-dioctadecyl-3, 3, 3', 3'-tetramethylindocarbocyanine perchlorhydrate (DiI) injection into the detrusor muscle. DRG L6-S1 were recognized as the major location of bladder afferent perikarya with an additional smaller peak at L1/L2. Retrogradely labelled bladder afferents located in DRG L4-S2 were subjected to immunohistochemistry or to laser-assisted microdissection with subsequent RT-PCR to study expression of mAChRs subtypes M1R-M5R. Immunolabelling for mAChR subtype M2R, validated on DRG from M2R gene-deficient mice, demonstrated this subtype on 35% of FB-labelled bladder afferents. RT-PCR demonstrated expression of subtypes M2R, M3R and M4R, but not of M1R and M5R, in pooled samples (30 section profiles each) of laser microdissected DiI-labelled bladder afferent cell bodies. In conclusion, bladder afferent neurons express different subtypes of mAChRs (M2R, M3R and M4R). Thus, processing of sensory information from the bladder appears to be under direct cholinergic control.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB367
    Produktbezeichnung:
    Anti-Muscarinic Acetylcholine Receptor m2 Antibody, clone M2-2-B3
  • Muscarinic signaling in the cochlea: presynaptic and postsynaptic effects on efferent feedback and afferent excitability. 20463237

    Acetylcholine is the major neurotransmitter of the olivocochlear efferent system, which provides feedback to cochlear hair cells and sensory neurons. To study the role of cochlear muscarinic receptors, we studied receptor localization with immunohistochemistry and reverse transcription-PCR and measured olivocochlear function, cochlear responses, and histopathology in mice with targeted deletion of each of the five receptor subtypes. M2, M4, and M5 were detected in microdissected immature (postnatal days 10-13) inner hair cells and spiral ganglion cells but not outer hair cells. In the adult (6 weeks), the same transcripts were found in microdissected organ of Corti and spiral ganglion samples. M2 protein was found, by immunohistochemistry, in olivocochlear fibers in both outer and inner hair cell areas. M3 mRNA was amplified only from whole cochleas, and M1 message was never seen in wild-type ears. Auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) were unaffected by loss of Gq-coupled receptors (M1, M3, or M5), as were shock-evoked olivocochlear effects and vulnerability to acoustic injury. In contrast, loss of Gi-coupled receptors (M2 and/or M4) decreased neural responses without affecting DPOAEs (at low frequencies). This phenotype and the expression pattern are consistent with excitatory muscarinic signaling in cochlear sensory neurons. At high frequencies, both ABRs and DPOAEs were attenuated by loss of M2 and/or M4, and the vulnerability to acoustic injury was dramatically decreased. This aspect of the phenotype and the expression pattern are consistent with a presynaptic role for muscarinic autoreceptors in decreasing ACh release from olivocochlear terminals during high-level acoustic stimulation and suggest that muscarinic antagonists could enhance the resistance of the inner ear to noise-induced hearing loss.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Coupling of the muscarinic m2 receptor to G protein-activated K(+) channels via Galpha(z) and a receptor-Galpha(z) fusion protein. Fusion between the receptor and Galpha( ... 10660578

    G protein-activated K(+) channel (GIRK), which is activated by the G(betagamma) subunit of heterotrimeric G proteins, and muscarinic m2 receptor (m2R) were coexpressed in Xenopus oocytes. Acetylcholine evoked a K(+) current, I(ACh), via the endogenous pertussis toxin (PTX)-sensitive G(i/o) proteins. Activation of I(ACh) was accelerated by increasing the expression of m2R, suggesting a collision coupling mechanism in which one receptor catalytically activates several G proteins. Coexpression of the alpha subunit of the PTX-insensitive G protein G(z), Galpha(z), induced a slowly activating PTX-insensitive I(ACh), whose activation kinetics were also compatible with the collision coupling mechanism. When GIRK was coexpressed with an m2R x Galpha(z) fusion protein (tandem), in which the C terminus of m2R was tethered to the N terminus of Galpha(z), part of I(ACh) was still eliminated by PTX. Thus, the m2R of the tandem activates the tethered Galpha(z) but also the nontethered G(i/o) proteins. After PTX treatment, the speed of activation of the m2R x Galpha(z)-mediated response did not depend on the expression level of m2R x Galpha(z) and was faster than when m2R and Galpha(z) were coexpressed as separate proteins. These results demonstrate that fusing the receptor and the Galpha strengthens their coupling, support the collision-coupling mechanism between m2R and the G proteins, and suggest a noncatalytic (stoichiometric) coupling between the G protein and GIRK in this model system.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
  • Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. 14744253

    Muscarinic acetylcholine receptors (mAChRs; M1-M5) play key roles in regulating the activity of many important functions of the central and peripheral nervous system. Because of the lack of ligands endowed with a high degree of receptor subtype selectivity and the fact that most tissues or cell types express two or more mAChR subtypes, identification of the physiological and pathophysiological roles of the individual mAChR subtypes has proven a difficult task. To circumvent these difficulties, several laboratories recently employed gene-targeting techniques to generate mutant mouse strains deficient in each of the five mAChR subtypes. Phenotyping studies showed that each mutant mouse line displayed characteristic physiological, pharmacological, behavioral, biochemical, or neurochemical deficits. The novel insights gained from these studies should prove instrumental for the development of novel classes of muscarinic drugs.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere