Millipore Sigma Vibrant Logo
 

protein+sample+preparation


121 Results Erweiterte Suche  
Suchergebnisse
Produkte (0)
Dokumente (4)

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (4)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • «
  • <
  • 1
  • >
  • »
  • GEL-FREE SAMPLE PREPARATION FOR THE NANOSCALE LC-MS/MS ANALYSIS AND IDENTIFICATION OF LOW-NANOGRAM PROTEIN SAMPLES 17763504

    Protein identification at the low nanogram level could in principle be obtained by most nanoscale LC-MS/MS systems. Nevertheless, the complex sample preparation procedures generally required in biological applications, and the consequent high risk of sample losses, very often hamper practical achievement of such low levels. In fact, the minimal amount of protein required for the identification from a gel band or spot, in general, largely exceeds the theoretical limit of identification reachable by nanoscale LC-MS/MS systems. A method for the identification of low levels of purified proteins, allowing limits of identification down to 1 ng when using standard bore, 75 microm id nanoscale LC-MS/MS systems is here reported. The method comprises an offline two-step sample cleanup, subsequent to protein digestion, which is designed to minimize sample losses, allows high flexibility in the choice of digestion conditions and delivers a highly purified peptide mixture even from "real world" digestion conditions, thus allowing the subsequent nanoscale LC-MS/MS analysis to be performed in automated, unattended operation for long series. The method can be applied to the characterization of low levels of affinity purified protei
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    C5737
    Produktbezeichnung:
    ZipTip® Pipette Tips
  • Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics. 20178338

    We describe a method to measure protein synthesis and catabolism in humans without prior purification and use the method to measure the turnover of surfactant protein-B (SP-B). SP-B, a lung-specific, hydrophobic protein essential for fetal-neonatal respiratory transition, is present in only picomolar quantities in tracheal aspirate samples and difficult to isolate for dynamic turnover studies using traditional in vivo tracer techniques. Using infusion of [5,5,5-(2)H(3)] leucine and a targeted proteomics method, we measured both the quantity and kinetics of SP-B tryptic peptides in tracheal aspirate samples of symptomatic newborn infants. The fractional synthetic rate (FSR) of SP-B measured using the most abundant proteolytic fragment, a 10 amino acid peptide from the carboxy-terminus of proSP-B (SPTGEWLPR), from the circulating leucine pool was 0.035 +/- 0.005 h(-1), and the fractional catabolic rate was 0.044 +/- 0.003 h(-1). This technique permits high-throughput and sensitive measurement of turnover of low abundance proteins with minimal sample preparation.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Identification and quantification of Gi-type GTP-binding proteins that copurify with a pituitary somatostatin receptor 8449959

    Somatostatin (SRIF) receptors of GH4C1 cells occupied with biotinyl-NH-[Leu8,D-Trp22,Tyr25] somatostatin28 (bio-S28) have been affinity purified over streptavidin affinity columns (Eppler, C. M., Zysk, J. R., Corbett, M., and Shieh, H.-M. (1992) J. Biol. Chem. 267, 15603-15612). This procedure results in the copurification of a single subtype of SRIF receptor (SSTR2) and associated guanine nucleotide-binding proteins (G proteins) that are coupled to these receptors. For accurate quantification it was necessary to: (i) use homogenous recombinant standards; (ii) accurately assess the purity of standards; (iii) determine recovery of G proteins during sample preparation and Western blotting; and (iv) account for cross-reactivity among antisera. Four pertussis toxin-sensitive G proteins were quantified with previously characterized polyclonal antisera. Gi alpha 1 also was measured with a novel, more sensitive monoclonal antibody (7H7). Go alpha and Gi alpha 2 but not Gi alpha 1 and Gi alpha 3 were detected in membrane extracts prepared from GH4C1 cells. In contrast, the G proteins copurified with SSTR2 receptors were predominantly Gi alpha 2 (50% of total G protein) and Gi alpha 3 (36% of total G protein), whereas Go alpha and Gi alpha 1 were negligible. G beta subunits also were detected. Silver staining confirmed the absence of a 39-kDa protein, corresponding to the M(r) of Go alpha associated with purified SRIF receptor-G protein complexes. These data suggest that SRIF receptors selectively couple to two G proteins, one of which is sparsely expressed in GH4C1 cells; the data conform to the notion that SRIF receptors discriminate between similar pertussis toxin-sensitive G proteins.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Spinning-disk confocal microscopy of yeast. 20946826

    Spinning-disk confocal microscopy is an imaging technique that combines the out-of-focus light rejection of confocal microscopy with the high sensitivity of wide-field microscopy. Because of its unique features, it is well suited to high-resolution imaging of yeast and other small cells. Elimination of out-of-focus light significantly improves the image contrast and signal-to-noise ratio, making it easier to resolve and quantitate small, dim structures in the cell. These features make spinning-disk confocal microscopy an excellent technique for studying protein localization and dynamics in yeast. In this review, I describe the rationale behind using spinning-disk confocal imaging for yeast, hardware considerations when assembling a spinning-disk confocal scope, and methods for strain preparation and imaging. In particular, I discuss choices of objective lens and camera, choice of fluorescent proteins for tagging yeast genes, and methods for sample preparation.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • «
  • <
  • 1
  • >
  • »