Millipore Sigma Vibrant Logo
 

Ab-5


334 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (279)
  • (18)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • c-Fos expression in preoptic nuclei as a marker of sleep rebound in the rat. 19686475

    Thermoregulation is known to interfere with sleep, possibly due to a functional interaction at the level of the preoptic area (POA). Exposure to low ambient temperature (T(a)) induces sleep deprivation, which is followed by sleep rebound after a return to laboratory T(a). As two POA subregions, the ventrolateral preoptic nucleus (VLPO) and the median preoptic nucleus (MnPO), have been proposed to have a role in sleep-related processes, the expression of c-Fos and the phosphorylated form of the cAMP/Ca(2+)-responsive element-binding protein (P-CREB) was investigated in these nuclei during prolonged exposure to a T(a) of -10 degrees C and in the early phase of the recovery period. Moreover, the dynamics of the sleep rebound during recovery were studied in a separate group of animals. The results show that c-Fos expression increased in both the VLPO and the MnPO during cold exposure, but not in a specific subregion within the VLPO cluster counting grid (VLPO T-cluster). During the recovery, concomitantly with a large rapid eye movement sleep (REMS) rebound and an increase in delta power during non-rapid eye movement sleep (NREMS), c-Fos expression was high in both the VLPO and the MnPO and, specifically, in the VLPO T-cluster. In both nuclei, P-CREB expression showed spontaneous variations in basal conditions. During cold exposure, an increase in expression was observed in the MnPO, but not in the VLPO, and a decrease was observed in both nuclei during recovery. Dissociation in the changes observed between c-Fos expression and P-CREB levels, which were apparently subject to state-related non-regulatory modulation, suggests that the sleep-related changes observed in c-Fos expression do not depend on a P-CREB-mediated pathway.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-519
    Nombre del producto:
    Anti-phospho-CREB (Ser133) Antibody
  • Spatial distribution of neural activity in the anterior olfactory nucleus evoked by odor and electrical stimulation. 21165975

    Several lines of evidence indicate that complex odorant stimuli are parsed into separate data streams in the glomeruli of the olfactory bulb, yielding a combinatorial "odotopic map." However, this pattern does not appear to be maintained in the piriform cortex, where stimuli appear to be coded in a distributed fashion. The anterior olfactory nucleus (AON) is intermediate and reciprocally interconnected between these two structures, and also provides a route for the interhemispheric transfer of olfactory information. The present study examined potential coding strategies used by the AON. Rats were exposed to either caproic acid, butyric acid, limonene, or purified air and the spatial distribution of Fos-immunolabeled cells was quantified. The two major subregions of the AON exhibited different results. Distinct odor-specific spatial patterns of activity were observed in pars externa, suggesting that it employs a topographic strategy for odor representation similar to the olfactory bulb. A spatially distributed pattern that did not appear to depend on odor identity was observed in pars principalis, suggesting that it employs a distributed representation of odors more similar to that seen in the piriform cortex. J. Comp. Neurol. 519:277-289, 2011. © 2010 Wiley-Liss, Inc.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5406
    Nombre del producto:
    Anti-GAD67 Antibody, clone 1G10.2
  • In vivo effects of zoledronic acid on oral mucosal epithelial cells. 20860766

    Osteonecrosis of the jaw is a serious complication of bisphosphonate treatment for which the pathophysiology is unknown. The purpose of this study was to investigate whether in vivo zoledronic acid (ZA) induces alterations in cell proliferation, apoptosis, and matrix metalloproteinases (MMPs) expression in oral mucosal epithelial cells.One-year-old dogs were either untreated (control group) or given high doses of intravenous ZA (ZA group) for 3 months. The doses of ZA were equivalent to those given to cancer patients, yet were administered two times more frequently (every 2 weeks). Mucosal tissues were assessed immunohistochemically for cell proliferation (proliferating cell nuclear antigen, PCNA), matrix metalloproteinase (MMP) expression, and apoptosis (caspase 3 and TUNEL).There were no significant differences between the groups with respect to PCNA, MMP-2, MMP-14, and TUNEL positive cells. However, the expression of MMP-9 was significantly higher in the control group than in the ZA group (P less than 0.05), whereas the expression of caspase 3 was significantly lower in the control group than in the ZA group (P less than 0.05).  These results suggest that high doses of ZA resulted in higher levels of apoptosis and lower levels of MMP-9 in the oral epithelial cells supporting the idea of bisphosphonate treatment affects the oral mucosa.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB8345
    Nombre del producto:
    Anti-MMP-14 Antibody
  • Effect of CFMTI, an allosteric metabotropic glutamate receptor 1 antagonist with antipsychotic activity, on Fos expression in regions of the brain related to schizophreni ... 20399255

    The main purpose of this study was to explore the sites and mechanisms of action of metabotropic glutamate receptor 1 (mGluR1) blockade for antipsychotic-like activity using a Fos mapping approach, with the intent of better understanding the similarities and differences between the pharmacological actions of mGluR1 antagonists and atypical antipsychotic drugs such as clozapine. Previously, we showed that an allosteric mGluR1 antagonist (negative allosteric modulator), 2-cyclopropyl-5-[1-(2-fluoro-3-pyridinyl)-5-methyl-1H-1,2,3-triazol-4-yl]-2,3-dihydro-1H-isoindol-1-one (CFMTI), induces Fos expression in the nucleus accumbens and the medial prefrontal cortex (mPFC), but not in the dorsolateral striatum, similar to the action of clozapine. In the present study, the Fos expression profile of CFMTI was more extensively evaluated in various areas of the brain. CFMTI induced Fos expression mainly in glutamatergic neurons in the mPFC, in a manner similar to clozapine. A significant increase in Fos expression was also observed in the locous coeruleus, central amygdaloid nucleus, the bed nucleus of the stria terminalis and the primary somatosensory cortex, but not in the ventral tegmental area, dorsal raphe or lateral septum. Fos expression in orexin neurons in the lateral hypothalamic/perifornical area (LH/PFA) is known to be positively correlated with the weight gain liability of atypical antipsychotics. CFMTI did not increase Fos expression in orexin neurons in the LH/PFA, in contrast to clozapine, which does have weight gain liability. These results suggest that CFMTI has unique and shared actions on Fos expression in various regions of the brain compared with clozapine.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB308
    Nombre del producto:
    Anti-Dopamine β Hydroxylase Antibody, clone 4F10.2
  • Prostaglandin E2-mediated attenuation of mesocortical dopaminergic pathway is critical for susceptibility to repeated social defeat stress in mice. 22442093

    Various kinds of stress are thought to precipitate psychiatric disorders, such as major depression. Whereas studies in rodents have suggested a critical role of medial prefrontal cortex (mPFC) in stress susceptibility, the mechanism of how stress susceptibility is determined through mPFC remains unknown. Here we show a critical role of prostaglandin E(2) (PGE(2)), a bioactive lipid derived from arachidonic acid, in repeated social defeat stress in mice. Repeated social defeat increased the PGE(2) level in the subcortical region of the brain, and mice lacking either COX-1, a prostaglandin synthase, or EP1, a PGE receptor, were impaired in induction of social avoidance by repeated social defeat. Given the reported action of EP1 that augments GABAergic inputs to midbrain dopamine neurons, we analyzed dopaminergic response upon social defeat. Analyses of c-Fos expression of VTA dopamine neurons and dopamine turnover in mPFC showed that mesocortical dopaminergic pathway is activated upon social defeat and attenuated with repetition of social defeat in wild-type mice. EP1 deficiency abolished such repeated stress-induced attenuation of mesocortical dopaminergic pathway. Blockade of dopamine D1-like receptor during social defeat restored social avoidance in EP1-deficient mice, suggesting that disinhibited dopaminergic response during social defeat blocks induction of social avoidance. Furthermore, mPFC dopaminergic lesion by local injection of 6-hydroxydopamine, which mimicked the action of EP1 during repeated stress, facilitated induction of social avoidance upon social defeat. Taken together, our data suggest that PGE(2)-EP1 signaling is critical for susceptibility to repeated social defeat stress in mice through attenuation of mesocortical dopaminergic pathway.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB318
    Nombre del producto:
    Anti-Tyrosine Hydroxylase Antibody, clone LNC1
  • Adult-born and preexisting olfactory granule neurons undergo distinct experience-dependent modifications of their olfactory responses in vivo. 16291946

    Neurogenesis continues throughout adulthood in the mammalian olfactory bulb and hippocampal dentate gyrus, suggesting the hypothesis that recently generated, adult-born neurons contribute to neural plasticity and learning. To explore this hypothesis, we examined whether olfactory experience modifies the responses of adult-born neurons to odorants, using immediate early genes (IEGs) to assay the response of olfactory granule neurons. We find that, shortly after they differentiate and synaptically integrate, the population of adult-born olfactory granule neurons has a greater population IEG response to novel odors than mature, preexisting neurons. Familiarizing mice with test odors increases the response of the recently incorporated adult-born neuron population to the test odors, and this increased responsiveness is long lasting, demonstrating that the response of the adult-born neuron population is altered by experience. In contrast, familiarizing mice with test odors decreases the IEG response of developmentally generated neurons, suggesting that recently generated adult-born neurons play a distinct role in olfactory processing. The increased IEG response is stimulus specific; familiarizing mice with a set of different, "distractor" odors does not increase the adult-born neuron population response to the test odors. Odor familiarization does not influence the survival of adult-born neurons, indicating that the changes in the population response of adult-born neurons are not attributable to increased survival of odor-stimulated neurons. These results demonstrate that recently generated adult-born olfactory granule neurons and older, preexisting granule neurons undergo contrasting experience-dependent modifications in vivo and support the hypothesis that adult-born neurons are involved in olfactory learning.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB368