Millipore Sigma Vibrant Logo
 

Acetylcholine Receptor


499 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (498)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (297)
  • (193)
  • (8)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Functional nicotinic acetylcholine receptors containing α6 subunits are on GABAergic neuronal boutons adherent to ventral tegmental area dopamine neurons. 21325521

    Diverse nicotinic acetylcholine receptor (nAChR) subtypes containing different subunit combinations can be placed on nerve terminals or soma/dendrites in the ventral tegmental area (VTA). nAChR α6 subunit message is abundant in the VTA, but α6*-nAChR cellular localization, function, pharmacology, and roles in cholinergic modulation of dopaminergic (DA) neurons within the VTA are not well understood. Here, we report evidence for α6β2*-nAChR expression on GABA neuronal boutons terminating on VTA DA neurons. α-Conotoxin (α-Ctx) MII labeling coupled with immunocytochemical staining localizes putative α6*-nAChRs to presynaptic GABAergic boutons on acutely dissociated, rat VTA DA neurons. Functionally, acetylcholine (ACh) induces increases in the frequency of bicuculline-, picrotoxin-, and 4-aminopyridine-sensitive miniature IPSCs (mIPSCs) mediated by GABA(A) receptors. These increases are abolished by α6*-nAChR-selective α-Ctx MII or α-Ctx PIA (1 nm) but not by α7 (10 nm methyllycaconitine) or α4* (1 μm dihydro-β-erythroidine)-nAChR-selective antagonists. ACh also fails to increase mIPSC frequency in VTA DA neurons prepared from nAChR β2 knock-out mice. Moreover, ACh induces an α-Ctx PIA-sensitive elevation in intraterminal Ca(2+) in synaptosomes prepared from the rat VTA. Subchronic exposure to 500 nm nicotine reduces ACh-induced GABA release onto the VTA DA neurons, as does 10 d of systemic nicotine exposure. Collectively, these results indicate that α6β2*-nAChRs are located on presynaptic GABAergic boutons within the VTA and modulate GABA release onto DA neurons. These presynaptic α6β2*-nAChRs likely play important roles in nicotinic modulation of DA neuronal activity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons. 11044729

    Relationships between nicotinic acetylcholine receptor (nAChR) channel function and nAChR subunit mRNA expression were explored in acutely isolated rat medial habenula (MHb) neurons using a combination of whole-cell recording and single cell RT-PCR techniques. Following amplification using subunit-specific primers, subunits could be categorized in one of three ways: (i) present in 95-100% cells: alpha3, alpha4, alpha5, beta2 and beta4; (ii) never present: alpha2; and (iii) sometimes present ( approximately 40% cells): alpha6, alpha7 and beta3. These data imply that alpha2 subunits do not participate in nAChRs on MHb cells, that alpha6, alpha7 and beta3 subunits are not necessary for functional channels but may contribute in some cells, and that nAChRs may require combinations of all or subsets of alpha3, alpha4, alpha5, beta2 and beta4 subunits. Little difference in the patterns of subunit expression between nicotine-sensitive and insensitive cells were revealed based on this qualitative analysis, implying that gene transcription per se may be an insufficient determinant of nAChR channel function. Normalization of nAChR subunit levels to the amount of actin mRNA, however, revealed that cells with functional channels were associated with high levels (>0.78 relative to actin; 11/12 cells) of all of the category (i) subunits: alpha3, alpha4, alpha5, beta2 and beta4. Conversely, one or more of these subunits was always low (0.40 relative to actin) in all cells with no detectable response to nicotine. Thus the formation of functional nAChR channels on MHb cells may require critical levels of several subunit mRNAs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB305
    Nombre del producto:
    Anti-Choline Acetyltransferase Antibody, clone 1E6
  • Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies. 6376523

    Highly purified postsynaptic membranes from Torpedo electric organ contain the acetylcholine receptor as well as other proteins. To identify synapse-specific components, we prepared monoclonal antibodies (mabs) to proteins extracted from the membranes with either lithium diiodosalicylate or alkaline treatment. 10 mabs specific for three different proteins were obtained. Seven mabs reacted with a major 43,000-mol-wt protein (43K protein). This protein is composed of isoelectric variants (pl = 7.2-7.8) and each of the mabs reacted with all of the variants. Analysis of these mabs by competition for binding to 43K protein and by reaction with proteolytic fragments of 43K protein in immunoblots showed that they recognize at least five different epitopes. Two mabs reacted with a protein of 90,000 mol wt (90K protein) and one with a protein of 58,000 mol wt composed of isoelectric variants (pl = 6.4-6.7) (58K protein). The 43K and 58K proteins appeared to co-purify with the receptor-containing membranes while the 90K protein did not. Immunofluorescence experiments indicated that the anti-43K mabs bind to the innervated face of Torpedo electrocytes and that a component related to the 43K protein is found at the rat neuromuscular junction. The anti-58K mab stained the innervated face, although rather weakly, while the anti-90K mabs reacted intensely with the non-innervated membrane. Thus, the 43K protein and possibly also the 58K protein are synaptic components while the 90K protein is predominantly nonsynaptic.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1645
    Nombre del producto:
    Anti-Dystrophin Antibody, clone 1808
  • The α4β2 nicotine acetylcholine receptor agonist ispronicline induces c-Fos expression in selective regions of the rat forebrain. 22414858

    The dominant nicotine acetylcholine receptor (nAChR) subtype in the brain is the pentameric receptor containing both α4 and β2 subunits (α4β2). Due to the lack of selective agonists it has not been ruled out what neuronal circuits that are stimulated after systemic administration with nicotine. We used the novel and selective α4β2 receptor agonist ispronicline (10 and 30 mg/kg s.c.) to localise the activated neurons in the rat forebrain using c-Fos-immunoreactivity as a marker of immediate neuronal activity. In the hypothalamic paraventricular nucleus, a large increase of c-Fos-positive cells was found only within its medial part. In addition, an increased number of c-Fos-immunoreactive cells were observed in the central nucleus of the amygdala, and the dorsolateral part of the bed nucleus of the stria terminalis. The restricted distribution of c-Fos to these areas, all of which are directly or indirectly involved in acute stress regulation after a single dose of ispronicline, supports earlier studies that the α4β2 receptors are strongly involved in nicotine-dependent activation of the hypothalamo-pituitary adrenocortical axis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    5296
  • Distinct neural pathways mediate α7 nicotinic acetylcholine receptor-dependent activation of the forebrain. 20051354

    alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions important for cognitive function. However, the neural substrates involved in these effects remain elusive. Here we identify cortically projecting cholinergic neurons in the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain (BF) as important targets for alpha(7) nAChR activation, as measured by c-Fos immunoreactivity, a marker of neuronal activation. Selective depletion of these cholinergic neurons abolishes the SSR180711-induced activation of the mPFC but not the ACCshell, demonstrating their critical importance for alpha(7) nAChR-dependent activation of the mPFC. Contrarily, selective depletion of dopaminergic neurons in the ventral tegmental area abolishes the SSR180711-induced activation of the ACCshell but not the mPFC or HDB. These results demonstrate 2 distinct neural pathways activated by SSR180711. The BF and mPFC are important for attentional function and may subserve the procognitive effects of alpha(7) nAChR agonists, whereas activation of the ACCshell is implicated in the beneficial effect of antipsychotics on the positive symptoms of schizophrenia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. 11850448

    The alpha6 subunit of the nicotinic acetylcholine receptor (nAChR) is expressed at very high levels in dopaminergic (DA) neurons. However, because of the lack of pharmacological tools selective for alpha6-containing nAChRs, the role of this subunit in the etiology of nicotine addiction remains unknown. To provide new tools to investigate this issue, we generated an alpha6 nAChR knock-out mouse. Homozygous null mutants (alpha6-/-) did not exhibit any gross neurological or behavioral deficits. A careful anatomic and molecular examination of alpha6-/- mouse brains demonstrated the absence of developmental alterations in these animals, especially in the visual and dopaminergic pathways, where the alpha6 subunit is normally expressed at the highest levels. On the other hand, receptor autoradiography revealed a decrease in [3H]nicotine, [3H]epibatidine, and [3H]cytisine high-affinity binding in the terminal fields of retinal ganglion cells of alpha6-/- animals, whereas high-affinity [125I]alpha-conotoxinMII (alphaCtxMII) binding completely disappeared in the brain. Moreover, inhibition of [3H]epibatidine binding on striatal membranes, using unlabeled alphaCtxMII or cytisine, revealed the absence of alphaCtxMII-sensitive and cytisine-resistant [3H]epibatidine binding sites in alpha6-/- mice, although the total amount of binding was unchanged. Because alphaCtxMII, a toxin formerly thought to be specific for alpha3beta2-containing nAChRs, is known to partially inhibit nicotine-induced dopamine release, these results support the conclusion that alpha6 rather than alpha3 is the partner of beta2 in the nicotinic modulation of DA neurons. They further show that alpha6-/- mice might be useful tools to understand the mechanisms of nicotine addiction, although some developmental compensation might occur in these mice.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB369
    Nombre del producto:
    Anti-Dopamine Transporter Antibody, NT, clone DAT-Nt
  • Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. 18794334

    A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the alpha4, alpha5, and beta2 subunits are synthesized by muscle fibers and concentrated in the small portion of the basal lamina that passes through the synaptic cleft at the NMJ. Topological maturation of AChR clusters was delayed in targeted mutant mice lacking laminin alpha5 and arrested in mutants lacking both alpha4 and alpha5. Analysis of chimeric laminins in vivo and of mutant myotubes cultured aneurally demonstrated that the laminins act directly on muscle cells to promote postsynaptic maturation. Immunohistochemical studies in vivo and in vitro along with analysis of targeted mutants provide evidence that laminin-dependent aggregation of dystroglycan in the postsynaptic membrane is a key step in synaptic maturation. Another synaptically concentrated laminin receptor, Bcam, is dispensable. Together with previous studies implicating laminins as organizers of presynaptic differentiation, these results show that laminins coordinate post- with presynaptic maturation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1997
    Nombre del producto:
    Anti-Integrin β1 Antibody, clone MB1.2
  • Rats harboring S284L Chrna4 mutation show attenuation of synaptic and extrasynaptic GABAergic transmission and exhibit the nocturnal frontal lobe epilepsy phenotype. 19020039

    Mutations of genes encoding alpha4, beta2, or alpha2 subunits (CHRNA4, CHRNB2, or CHRNA2, respectively) of nAChR [neuronal nicotinic ACh (acetylcholine) receptor] cause nocturnal frontal lobe epilepsy (NFLE) in human. NFLE-related seizures are seen exclusively during sleep and are characterized by three distinct seizure phenotypes: "paroxysmal arousals," "paroxysmal dystonia," and "episodic wandering." We generated transgenic rat strains that harbor a missense mutation S284L, which had been identified in CHRNA4 in NFLE. The transgenic rats were free of biological abnormalities, such as dysmorphology in the CNS, and behavioral abnormalities. The mRNA level of the transgene (mutant Chrna4) was similar to the wild type, and no distorted expression was detected in the brain. However, the transgenic rats showed epileptic seizure phenotypes during slow-wave sleep (SWS) similar to those in NFLE exhibiting three characteristic seizure phenotypes and thus fulfilled the diagnostic criteria of human NFLE. The therapeutic response of these rats to conventional antiepileptic drugs also resembled that of NFLE patients with the S284L mutation. The rats exhibited two major abnormalities in neurotransmission: (1) attenuation of synaptic and extrasynaptic GABAergic transmission and (2) abnormal glutamate release during SWS. The currently available genetically engineered animal models of epilepsy are limited to mice; thus, our transgenic rats offer another dimension to the epilepsy research field.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5590
  • Differential contribution of TRPM4 and TRPM5 nonselective cation channels to the slow afterdepolarization in mouse prefrontal cortex neurons. 25237295

    In certain neurons from different brain regions, a brief burst of action potentials can activate a slow afterdepolarization (sADP) in the presence of muscarinic acetylcholine receptor agonists. The sADP, if suprathreshold, can contribute to persistent non-accommodating firing in some of these neurons. Previous studies have characterized a Ca(2+)-activated non-selective cation (CAN) current (ICAN ) that is thought to underlie the sADP. ICAN depends on muscarinic receptor stimulation and exhibits a dependence on neuronal activity, membrane depolarization and Ca(2+)-influx similar to that observed for the sADP. Despite the widespread occurrence of sADPs in neurons throughout the brain, the molecular identity of the ion channels underlying these events, as well as ICAN , remains uncertain. Here we used a combination of genetic, pharmacological and electrophysiological approaches to characterize the molecular mechanisms underlying the muscarinic receptor-dependent sADP in layer 5 pyramidal neurons of mouse prefrontal cortex. First, we confirmed that in the presence of the cholinergic agonist carbachol a brief burst of action potentials triggers a prominent sADP in these neurons. Second, we confirmed that this sADP requires activation of a PLC signaling cascade and intracellular calcium signaling. Third, we obtained direct evidence that the transient receptor potential (TRP) melastatin 5 channel (TRPM5), which is thought to function as a CAN channel in non-neural cells, contributes importantly to the sADP in the layer 5 neurons. In contrast, the closely related TRPM4 channel may play only a minor role in the sADP.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377B
    Nombre del producto:
    Anti-NeuN Antibody, clone A60, biotin conjugated
  • Kynurenate production by cultured human astrocytes. 12541009

    In the rodent brain, astrocytes are known to be the primary source of kynurenate (KYNA), an endogenous antagonist of both the glycine(B) and the alpha7 nicotinic acetylcholine receptor. In the present study, primary human astrocytes were used to examine the characteristics and regulation of de novo KYNA synthesis in vitro. To this end, cells were exposed to KYNA's bioprecursor L-kynurenine, and newly formed KYNA was recovered from the extracellular milieu. The production of KYNA was stereospecific and rose with increasing L-kynurenine concentrations, reaching a plateau in the high microM range. In an analogous experiment, astrocytes also readily produced and liberated the potent, specific glycine(B) receptor antagonist 7-chlorokynurenate from L-4-chlorokynurenine. KYNA synthesis was dose-dependently reduced by L-leucine or L-phenylalanine, two amino acids that compete with L-kynurenine for cellular uptake, and by aminooxyacetate, a non-specific aminotransferase inhibitor. In contrast, KYNA formation was stimulated by 5 mM pyruvate or oxaloacetate, which act as co-substrates of the transamination reaction. Aglycemic or depolarizing (50 mM KCl or 100 microM veratridine) conditions had no effect on KYNA synthesis. Subsequent studies using tissue homogenate showed that both known cerebral kynurenine aminotransferases (KAT I and KAT II) are present in astrocytes, but that KAT II appears to be singularly responsible for KYNA formation under physiological conditions. Taken together with previous results, these data suggest that very similar mechanisms control KYNA synthesis in the rodent and in the human brain. These regulatory events are likely to influence the neuromodulatory effects of astrocyte-derived KYNA in the normal and diseased human brain.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1940
    Nombre del producto:
    Anti-Fibronectin Antibody, cellular, clone DH1