Millipore Sigma Vibrant Logo
 

Glutamate Receptor AMPA


272 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (271)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (271)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Ionotropic glutamate receptor AMPA 1 is associated with ovulation rate. 21072200

    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system by opening ion channels upon the binding of glutamate. Despite the essential roles of glutamate in the control of reproduction and anterior pituitary hormone secretion, there is a limited understanding of how glutamate receptors control ovulation. Here we reveal the function of the ionotropic glutamate receptor AMPA-1 (GRIA1) in ovulation. Based on a genome-wide association study in Bos taurus, we found that ovulation rate is influenced by a variation in the N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain of GRIA1, in which serine is replaced by asparagine. GRIA1(Asn) has a weaker affinity to glutamate than GRIA1(Ser), both in Xenopus oocytes and in the membrane fraction of bovine brain. This single amino acid substitution leads to the decreased release of gonadotropin-releasing hormone (GnRH) in immortalized hypothalamic GT1-7 cells. Cows with GRIA1(Asn) have a slower luteinizing hormone (LH) surge than cows with GRIA1(Ser). In addition, cows with GRIA1(Asn) possess fewer immature ovarian follicles before superovulation and have a lower response to hormone treatment than cows with GRIA1(Ser). Our work identified that GRIA1 is a critical mediator of ovulation and that GRIA1 might be a useful target for reproductive therapy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1504
    Nombre del producto:
    Anti-Glutamate receptor 1 Antibody
  • Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal. 18924138

    Prolonged benzodiazepine treatment leads to tolerance and increases the risk of dependence. Flurazepam (FZP) withdrawal is associated with increased anxiety correlated with increased alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPAR)-mediated synaptic function and AMPAR binding in CA1 pyramidal neurons. Enhanced AMPAR synaptic strength is also associated with a shift toward inward rectification of synaptic currents and increased expression of GluR1, but not GluR2, subunits, suggesting augmented membrane incorporation of GluR1-containing, GluR2-lacking AMPARs. To test this hypothesis, the postsynaptic incorporation of GluR1 and GluR2 subunits in CA1 neurons after FZP withdrawal was examined by postembedding immunogold quantitative electron microscopy. The percentage of GluR1 positively labeled stratum radiatum (SR) synapses was significantly increased in FZP-withdrawn rats (88.2% +/- 2.2%) compared with controls (74.4% +/- 1.9%). In addition, GluR1 immunogold density was significantly increased by 30% in SR synapses in CA1 neurons from FZP-withdrawn rats compared with control rats (FZP: 14.1 +/- 0.3 gold particles/mum; CON: 10.8 +/- 0.4 gold particles/mum). In contrast, GluR2 immunogold density was not significantly different between groups. Taken together with recent functional data from our laboratory, the current study suggests that the enhanced glutamatergic strength at CA1 neuron synapses during benzodiazepine withdrawal is mediated by increased incorporation of GluR1-containing AMPARs. Mechanisms underlying synaptic plasticity in this model of drug dependence are therefore fundamentally similar to those that operate during activity-dependent plasticity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1504
    Nombre del producto:
    Anti-Glutamate receptor 1 Antibody
  • Cornichons modify channel properties of recombinant and glial AMPA receptors. 22815494

    Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. Significant advances have been made in our understanding of AMPA-type glutamate receptor (AMPAR) regulation by transmembrane AMPAR regulatory proteins. Less is known about the functional influence of cornichons-unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calcium-impermeable and GluA2-lacking calcium-permeable (CP) AMPARs expressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance, and calcium permeability of CP-AMPARs while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labeling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents-the relative efficacy of the partial agonist kainate (I(KA)/I(Glu) ratio 0.4) and a greater than fivefold potentiation of kainate responses by cyclothiazide-suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • AMPA glutamate receptor subunit 2 in normal and visually deprived macaque visual cortex. 12507323

    Glutamate and its various receptors are known to play an important role in excitatory synaptic transmission throughout the CNS, including the primary visual cortex. Among subunits of the AMPA receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid), subunit 2 (GluR2) is of special significance because it controls their Ca2+ permeability. In the past, this subunit has been studied mostly in conjunction with other AMPA subunits. The present study sought to determine if GluR2 alone has a distinct laminar distribution in the normal macaque visual cortex, and if its pattern correlated with that of cytochrome oxidase (CO) under normal and monocularly deprived conditions. In the normal adult cortex, GluR2 immunoreactivity (ir) had a patchy distribution in layers II/III, in register with CO-rich puffs. GluR2-ir highlighted the upper border of layer II, the lower border of layer IV (previously termed IVC(beta dark)) and, most prominently, layer VI. Labeled neurons were primarily of the pyramidal type present in the upper border and lower half of layer VI, layers II/III, and scattered in layers V and upper IVB. Labeled nonpyramidal cells were large in layer IVB and small in IVC(beta dark). Notably, the bulk of CO-rich layers IVC and IVA had very low levels of GluR2-ir. At fetal day 13, however, GluR2 labeling showed a honeycomb-like pattern in layer IVA not found in the adult. A fragment of GluR2 cDNA was generated from a human cDNA library, and in situ hybridization revealed an expression pattern similar to that of GluR2 proteins. After 1-4 weeks of monocular impulse blockade with tetrodotoxin (TTX), alternating rows of strong and weak GluR2-ir in layers VI and II/III appeared in register with CO-labeled dark and light ocular dominance columns in layer IVC and puffs in II/III, respectively. Our results indicate that various cortical layers are differentially influenced by glutamate. The bulk of the major geniculate-recipient layers IVC and IVA have low levels of GluR2, presumably favoring synaptic transmission via Ca(2+)-permeable glutamate receptors. GluR2 plays a more important role in supragranular and infragranular layers, where the initial geniculate signals are further modified and are transmitted to other cortical and subcortical centers. The maintenance of GluR2 in these output layers is governed by visual input and neuronal activity, as monocular impulse blockade induced a down-regulation of this subunit in deprived ocular dominance columns.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1768-25UG
  • Distribution of AMPA glutamate receptor GluR1 subunit-immunoreactive neurons and their co-localization with calcium-binding proteins and GABA in the mouse visual cortex. 16511345

    The neuronal localization of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor (GluR) subunits is vital as they play key roles in the regulation of calcium permeability. We have examined the distribution of the calcium permeable AMPA glutamate receptor subunit GluR1 in the mouse visual cortex immunocytochemically. We compared this distribution to that of the calcium-binding proteins calbindin D28K, calretinin, and parvalbumin, and of GABA. The highest density of GluR1-immunoreactive (IR) neurons was found in layers II/III. Enucleation appeared to have no effect on the distribution of GluR1-IR neurons. The labeled neurons varied in morphology; the majority were round or oval and no pyramidal cells were labeled by the antibody. Two-color immunofluorescence revealed that 26.27%, 10.65%, and 40.31% of the GluR1-IR cells also contained, respectively, calbindin D28K, calretinin, and parvalbumin. 20.74% of the GluR1-IR neurons also expressed GABA. These results indicate that many neurons that express calcium-permeable GluR1 also express calcium binding proteins. They also demonstrate that one fifth of the GluR1-IR neurons in the mouse visual cortex are GABAergic interneurons.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Behavioral and structural responses to chronic cocaine require a feedforward loop involving ΔFosB and calcium/calmodulin-dependent protein kinase II in the nucleus accumb ... 23467346

    The transcription factor ΔFosB and the brain-enriched calcium/calmodulin-dependent protein kinase II (CaMKIIα) are induced in the nucleus accumbens (NAc) by chronic exposure to cocaine or other psychostimulant drugs of abuse, in which the two proteins mediate sensitized drug responses. Although ΔFosB and CaMKIIα both regulate AMPA glutamate receptor expression and function in NAc, dendritic spine formation on NAc medium spiny neurons (MSNs), and locomotor sensitization to cocaine, no direct link between these molecules has to date been explored. Here, we demonstrate that ΔFosB is phosphorylated by CaMKIIα at the protein-stabilizing Ser27 and that CaMKII is required for the cocaine-mediated accumulation of ΔFosB in rat NAc. Conversely, we show that ΔFosB is both necessary and sufficient for cocaine induction of CaMKIIα gene expression in vivo, an effect selective for D1-type MSNs in the NAc shell subregion. Furthermore, induction of dendritic spines on NAc MSNs and increased behavioral responsiveness to cocaine after NAc overexpression of ΔFosB are both CaMKII dependent. Importantly, we demonstrate for the first time induction of ΔFosB and CaMKII in the NAc of human cocaine addicts, suggesting possible targets for future therapeutic intervention. These data establish that ΔFosB and CaMKII engage in a cell-type- and brain-region-specific positive feedforward loop as a key mechanism for regulating the reward circuitry of the brain in response to chronic cocaine.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Nuclear respiratory factor 1 co-regulates AMPA glutamate receptor subunit 2 and cytochrome c oxidase: tight coupling of glutamatergic transmission and energy metabolism i ... 19166514

    Neuronal activity, especially of the excitatory glutamatergic type, is highly dependent on energy from the oxidative pathway. We hypothesized that the coupling existed at the transcriptional level by having the same transcription factor to regulate a marker of energy metabolism, cytochrome c oxidase (COX) and an important subunit of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors, GluR2 (Gria2). Nuclear respiratory factor 1 (NRF-1) was a viable candidate because it regulates all COX subunits and potentially activates Gria2. By means of in silico analysis, electrophoretic mobility shift and supershift, chromatin immunoprecipitation, and promoter mutational assays, we found that NRF-1 functionally bound to Gria2 promoter. Silencing of NRF-1 with small interference RNA prevented the depolarization-stimulated up-regulation of Gria2 and COX, and over-expression of NRF-1 rescued neurons from tetrodotoxin-induced down-regulation of Gria2 and COX transcripts. Thus, neuronal activity and energy metabolism are tightly coupled at the molecular level, and NRF-1 is a critical agent in this process.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1504
    Nombre del producto:
    Anti-Glutamate receptor 1 Antibody
  • Spatial compartmentalization of AMPA glutamate receptor subunits at the calyx of Held synapse. 19937709

    The mature calyx of Held ending on principal neurons of the medial nucleus of the trapezoid body (MNTB) has very specialized morphological and molecular features that make it possible to transmit auditory signals with high fidelity. In a previous work we described an increased localization of the ionotropic alpha-amino-3-hydroxy-5-methyl-4 isoxazolepropionic acid (AMPA) glutamate receptor (GluA) subunits at postsynaptic sites of the calyx of Held-principal cell body synapses from postnatal development to adult. The aim of the present study was to investigate whether the pattern of the synaptic distribution of GluA2/3/4c and -4 in adult MNTB principal cell bodies correlated with preferential subcellular domains (stalks and swellings) of the calyx. We used a postembedding immunocytochemical method combined with specific antibodies to GluA2/3/4c and GluA4 subunits. We found that the density of GluA2/3/4c in calyceal swellings (19 +/- 1.54 particles/microm) was higher than in stalks (10.93 +/- 1.37 particles/microm); however, the differences for GluA4 were not statistically significant (swellings: 13.84 +/- 1.39 particles/microm; stalks: 10.42 +/- 1.24 particles/microm). Furthermore, GluA2/3/4c and GluA4 labeling co-localized to some extent in calyceal stalks and swellings. Taking these data together, the distribution pattern of GluA subunits in postsynaptic specializations are indicative of a spatial compartmentalization of AMPA subunits in mature calyx-principal neuron synapses that may support the temporally precise transmission required for sound localization in the auditory brainstem.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1508
    Nombre del producto:
    Anti-Glutamate Receptor 4 Antibody
  • Cellular localization of GluR1, GluR2/3 and GluR4 glutamate receptor subunits in neurons of the rat neostriatum. 9462876

    Glutamate excitocytotoxicity is implied in the cause of neuronal degeneration in the neostriatum, in which the toxicity may be mediated by different families of glutamate receptors. The precise cellular localization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)-type glutamate receptor subunits (GluR1-4), one of the major family that involves in the mechanisms of glutamate excitocytotoxicity, in different populations of striatal neurons is therefore of special interest. Immunoreactivity for GluR2/3 subunits was detected in the medium-sized spiny neurons. By double labelling experiments, immunoreactivity for GluR1 and GluR4 was detected only in aspiny striatal neurons that display parvalbumin immunoreactivity, but not in the other neuron populations that display choline acetyltransferase or muscarinic m2 receptor immunoreactivity, nor neurons that display nitric oxide synthase immunoreactivity or nicotinamide adenine dinucleotide phosphate-diaphorase activity. These results indicate that GluR1 and GluR4 immunoreactivity is displayed only in the GABAergic interneurons in the neostriatum. In addition, almost all of the GluR1-immunoreactive neurons were found to display GluR4 immunoreactivity. This finding indicates for the first time that the striatal GABAergic interneurons co-express GluR1 and GluR4 subunits. The results of the present study indicate that there is a differential localization of AMPA-type glutamate receptor subunits in different populations of striatal neurons and they may have a different susceptibility to glutamate excitocytotoxicity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • A Myosin Va mutant mouse with disruptions in glutamate synaptic development and mature plasticity in visual cortex. 23658184

    Myosin Va (MyoVa) mediates F-actin-based vesicular transport toward the plasma membrane and is found at neuronal postsynaptic densities (PSDs), but the role of MyoVa in synaptic development and function is largely unknown. Here, in studies using the dominant-negative MyoVa neurological mutant mouse Flailer, we find that MyoVa plays an essential role in activity-dependent delivery of PSD-95 and other critical PSD molecules to synapses and in endocytosis of AMPA-type glutamate receptors (AMPAR) in the dendrites of CNS neurons. MyoVa is known to carry a complex containing the major scaffolding proteins of the mature PSD, PSD-95, SAPAP1/GKAP, Shank, and Homer to dendritic spine synapses. In Flailer, neurons show abnormal dendritic shaft localization of PSD-95, stargazin, dynamin3, AMPARs and abnormal spine morphology. Flailer neurons also have abnormally high AMPAR miniature current frequencies and spontaneous AMPAR currents that are more frequent and larger than in wild-type while numbers of NMDAR containing synapses remain normal. The AMPAR abnormalities are consistent with a severely disrupted developmental regulation of long-term depression that we find in cortical Flailer neurons. Thus MyoVa plays a fundamentally important role both in localizing mature glutamate synapses to spines and in organizing the synapse for normal function. For this reason Flailer mice will be valuable in further dissecting the role of MyoVa in normal synaptic and circuit refinement and also in studies of neurological and neuropsychiatric diseases where disruptions of normal glutamate synapses are frequently observed.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB397
    Nombre del producto:
    Anti-Glutamate Receptor 2 Antibody, extracellular, clone 6C4