Millipore Sigma Vibrant Logo
 

Neutral


2182 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (1,501)
  • (464)
  • (15)
  • (10)
  • (6)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. 24820416

    Lipid droplet (LD) is a ubiquitous organelle that stores triacylglycerol and other neutral lipids. Perilipin 5 (Plin5), a member of the perilipin protein family that is abundantly expressed in the heart, is essential to protect LDs from attack by lipases, including adipose triglyceride lipase. Plin5 controls heart metabolism and performance by maintaining LDs under physiological conditions. Aberrant lipid accumulation in the heart leads to organ malfunction, or cardiomyopathy. To elucidate the role of Plin5 in a metabolically disordered state and the mechanism of lipid-induced cardiomyopathy, we studied the effects of streptozotocin-induced type 1 diabetes in Plin5-knockout (KO) mice. In contrast to diabetic wild-type mice, diabetic Plin5-KO mice lacked detectable LDs in the heart and did not exhibit aberrant lipid accumulation, excessive reactive oxygen species (ROS) generation, or heart malfunction. Moreover, diabetic Plin5-KO mice exhibited lower heart levels of lipotoxic molecules, such as diacylglycerol and ceramide, than wild-type mice. Membrane translocation of protein kinase C and the assembly of NADPH oxidase 2 complex on the membrane were also suppressed. The results suggest that diabetic Plin5-KO mice are resistant to type 1 diabetes-induced heart malfunction due to the suppression of the diacylglycerol/ceramide-protein kinase C pathway and of excessive ROS generation by NADPH oxidase.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AP108P
    Nombre del producto:
    Goat Anti-Guinea Pig IgG Antibody, HRP conjugate
  • Differences in long-term memory stability and AmCREB level between forward and backward conditioned honeybees (Apis mellifera). 25964749

    In classical conditioning a predictive relationship between a neutral stimulus (conditioned stimulus; CS) and a meaningful stimulus (unconditioned stimulus; US) is learned when the CS precedes the US. In backward conditioning the sequence of the stimuli is reversed. In this situation animals might learn that the CS signals the end or the absence of the US. In honeybees 30 min and 24 h following backward conditioning a memory for the excitatory and inhibitory properties of the CS could be retrieved, but it remains unclear whether a late long-term memory is formed that can be retrieved 72 h following backward conditioning. Here we examine this question by studying late long-term memory formation in forward and backward conditioning of the proboscis extension response (PER). We report a difference in the stability of memory formed upon forward and backward conditioning with the same number of conditioning trials. We demonstrate a transcription-dependent memory 72 h after forward conditioning but do not observe a 72 h memory after backward conditioning. Moreover we find that protein degradation is differentially involved in memory formation following these two conditioning protocols. We report differences in the level of a transcription factor, the cAMP response element binding protein (CREB) known to induce transcription underlying long-term memory formation, following forward and backward conditioning. Our results suggest that these alterations in CREB levels might be regulated by the proteasome. We propose that the differences observed are due to the sequence of stimulus presentation between forward and backward conditioning and not to differences in the strength of the association of both stimuli.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-1307
  • Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. 14519437

    Calpain is a Ca(2+)-activated neutral protease that supposedly plays a key role in myocardial dysfunction following ischemia/reperfusion, by degrading certain proteins involved in the contraction mechanism. It is possible that overexpression of calpastatin, an endogenous calpain inhibitor, lessens contractile dysfunction in the heart after reperfusion by preventing cardiac troponin I (TnI) degradation. This claim is tested by overexpression of human calpastatin (hCS) in rat hearts ex vivo using an adenovirus vector; the hearts were transplanted heterotopically into the abdomens of recipient rats to allow expression of hCS. On the fourth day after surgery, the hearts were excised and perfused in vitro to study their recovery from 30 min of global ischemia, which was followed by 60 min of reperfusion. The peak recovery of the left ventricular developed pressure (LVDP), and the values of its first derivative (max dP/dt, min dP/dt) in the hCS-overexpressed hearts were 88.9 +/- 4.8%, 90.8 +/- 9.2% and 106.4 +/- 9.8%, respectively; these values were all significantly greater than in the control hearts transfected with LacZ alone (51.4 +/- 6.9%, 52.6 +/- 8.1% and 54.7 +/- 6.6%, P < 0.05). In western blot analysis of ventricular myocardial samples (at 60-min reperfusion) using a monoclonal anti-TnI antibody, two bands corresponding to intact TnI (30 kDa) and TnI fragments (27 kDa) were distinguished. The fraction of 27-kDa TnI (percent of total TnI immunoreactivity) in hCS-overexpressed hearts was significantly less than the controls (5.7 +/- 2.7% vs. 18.1 +/- 3.2%, P < 0.05), implying a protective action of hCS against TnI degradation. These results suggest that adenovirus-mediated overexpression of hCS in the heart could be a novel biological means to minimize myocardial stunning by ischemia/reperfusion.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Effects of prolonged water washing of tissue samples fixed in formalin on histological staining. 21958122

    The effects of prolonged water washing after fixation for 48 h in 10% (v/v) phosphate-buffered neutral formalin on the quality of representative histological staining methods were evaluated using samples of liver, kidney, spleen and thymus collected from three male Crl:CD(SD)(IGS) rats and one male beagle dog. Because door-to-door courier services in Japan prohibit handling formalin, our goal was to confirm that formalin fixed wet tissue samples could be stored in tap water rather than formalin during transportation of the samples without decreasing the quality of their staining or immunohistochemistry. Each tissue sample was allocated randomly to one of three groups: 12 min, 3 days and 7 days of washing in running tap water; samples then were routinely embedded in paraffin and sectioned. The sections were stained with hematoxylin and eosin, periodic acid-Schiff, azan, and the TdT-mediated dUTP-biotin nick end labeling (TUNEL) method. Immunohistochemical staining for Factor VIII, ED-1 and CD3 also was assessed. Prolonged water washing for up to 7 days did not affect the morphology or stainability by standard histological methods, or the intensity and frequency of positive reactions using the TUNEL method. Only immunohistochemical staining of Factor VIII was altered in both the rat and dog sections after 7 days of water washing. The intensity of positive reactions of Factor VIII immunohistochemistry after 7 days water washing was still strong enough to detect microscopically. Therefore, prolonged water washing for up to 7 days after formalin fixation does not have seriously detrimental effects on the quality and characteristics of paraffin sections stained by various methods, including immunohistochemistry.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Extracellular acidosis stimulates NHE2 expression through activation of transcription factor Egr-1 in the intestinal epithelial cells. 24376510

    Na(+)/H(+) exchangers (NHEs) play important roles in regulating internal pH (pHi), cell volume and neutral Na(+) absorption in the human intestine. Earlier studies have shown that low extracellular pH (pHe) and metabolic acidosis increases the expression and function of NHE1-3 genes. However, transcriptional mechanisms involved remained unknown. Therefore, we investigated the molecular mechanisms underlying acid-induced NHE2 expression in C2BBe1 and SK-CO15 intestinal epithelial cells. Assessing total RNA and protein by RT-PCR and Western blot analysis, respectively, displayed significant increases in the NHE2 mRNA and protein levels in cells exposed to acidic media (pH 6.5 and 6.7) compared to normal medium. Acid treatment was also associated with a significant enhancement in NHE2 transport activity. Quantification of the heterogeneous nuclear RNA indicated that the rate of NHE2 transcription was increased in response to acid. Furthermore, acid caused a significant increase in NHE2 promoter activity confirming transcriptional upregulation. Through functional and mutational studies the acid-response element was mapped to a 15-nucleotide GC-rich sequence at bp -337 to -323 upstream from the transcription start site. We previously identified this element as an overlapping Egr-1/Sp1/Egr-1 motif that was essential for the NHE2 upregulation by mitogen-induced transcription factor Egr-1. Cells exposed to acid exhibited a temporal increase in Egr-1 mRNA and protein expression. These events were followed by Egr-1 nuclear accumulation, as detected by immunofluorescence microscopy, and potentiated its in vitro and in vivo interaction with the NHE2 promoter. Disruption of ESE motif and knockdown of Egr-1 expression by targeted small interfering RNA abrogated the acid-induced NHE2 transcriptional activity. These data indicate that the acid-dependent NHE2 stimulation is implemented by transcriptional upregulation of NHE2 via acid-induced Egr-1 in the intestinal epithelial cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Striatal astrocytes act as a reservoir for L-DOPA. 25188235

    L-DOPA is therapeutically efficacious in patients with Parkinson's disease (PD), although dopamine (DA) neurons are severely degenerated. Since cortical astrocytes express neutral amino acid transporter (LAT) and DA transporter (DAT), the uptake and metabolism of L-DOPA and DA in striatal astrocytes may influence their availability in the dopaminergic system of PD. To assess possible L-DOPA- and DA-uptake and metabolic properties of striatal astrocytes, we examined the expression of L-DOPA, DA and DAT in striatal astrocytes of hemi-parkinsonian model rats after repeated L-DOPA administration, and measured the contents of L-DOPA, DA and their metabolite in primary cultured striatal astrocytes after L-DOPA/DA treatment. Repeated injections of L-DOPA induced apparent L-DOPA- and DA-immunoreactivities and marked expression of DAT in reactive astrocytes on the lesioned side of the striatum in hemi-parkinsonian rats. Exposure to DA for 4h significantly increased the levels of DA and its metabolite DOPAC in cultured striatal astrocytes. L-DOPA was also markedly increased in cultured striatal astrocytes after 4-h L-DOPA exposure, but DA was not detected 4 or 8h after L-DOPA treatment, despite the expression of aromatic amino acid decarboxylase in astrocytes. Furthermore, the intracellular level of L-DOPA in cultured striatal astrocytes decreased rapidly after removal of extracellular L-DOPA. The results suggest that DA uptaken into striatal astrocytes is rapidly metabolized and that striatal astrocytes act as a reservoir of L-DOPA that govern the uptake or release of L-DOPA depending on extracellular L-DOPA concentration, but are less capable of converting L-DOPA to DA.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Lmo4 in the basolateral complex of the amygdala modulates fear learning. 22509321

    Pavlovian fear conditioning is an associative learning paradigm in which mice learn to associate a neutral conditioned stimulus with an aversive unconditioned stimulus. In this study, we demonstrate a novel role for the transcriptional regulator Lmo4 in fear learning. LMO4 is predominantly expressed in pyramidal projection neurons of the basolateral complex of the amygdala (BLC). Mice heterozygous for a genetrap insertion in the Lmo4 locus (Lmo4gt/+), which express 50% less Lmo4 than their wild type (WT) counterparts display enhanced freezing to both the context and the cue in which they received the aversive stimulus. Small-hairpin RNA-mediated knockdown of Lmo4 in the BLC, but not the dentate gyrus region of the hippocampus recapitulated this enhanced conditioning phenotype, suggesting an adult- and brain region-specific role for Lmo4 in fear learning. Immunohistochemical analyses revealed an increase in the number of c-Fos positive puncta in the BLC of Lmo4gt/+ mice in comparison to their WT counterparts after fear conditioning. Lastly, we measured anxiety-like behavior in Lmo4gt/+ mice and in mice with BLC-specific downregulation of Lmo4 using the elevated plus maze, open field, and light/dark box tests. Global or BLC-specific knockdown of Lmo4 did not significantly affect anxiety-like behavior. These results suggest a selective role for LMO4 in the BLC in modulating learned but not unlearned fear.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-532
    Nombre del producto:
    Anti-CaM Kinase II Antibody, α subunit, clone 6G9
  • Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. 11751895

    Neutral matrix metalloproteinases (MMPs) play an important role in bone matrix degradation accompanied by bone remodeling. We herein show for the first time that macrophage migration inhibitory factor (MIF) up-regulates MMP-13 (collagenase-3) mRNA of rat calvaria-derived osteoblasts. The mRNA up-regulation was seen at 3 h in response to MIF (10 microg/ml), reached the maximum level at 6-12 h, and returned to the basal level at 36 h. MMP-13 mRNA up-regulation was preceded by up-regulation of c-jun and c-fos mRNA. Tissue inhibitor of metalloproteinase (TIMP)-1 and MMP-9 (92-kDa type IV collagenase) were also up-regulated, but to a lesser extent. The MMP-13 mRNA up-regulation was significantly suppressed by genistein, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. Similarly, a selective mitogen-activated protein kinase (MAPK) kinase (MEK)1/2 inhibitor (PD98059) and c-jun/activator protein (AP)-1 inhibitor (curcumin) suppressed MMP-13 mRNA up-regulation induced by MIF. The mRNA levels of c-jun and c-fos in response to MIF were also inhibited by PD98059. Consistent with these results, MIF stimulated phosphorylation of tyrosine, autophosphorylation of Src, activation of Ras, activation of extracellular signal-regulated kinases (ERK) 1/2, a MAPK, but not c-Jun N-terminal kinase or p38, and phosphorylation of c-Jun. Osteoblasts obtained from calvariae of newborn JunAA mice, defective in phosphorylation of c-Jun, or newborn c-Fos knockout (Fos -/- ) mice, showed much less induction of MMP-13 with the addition of MIF than osteoblasts obtained from wild-type or littermate control mice. Taken together, these results suggest that MIF increases the MMP-13 mRNA level of rat osteoblasts via the Src-related tyrosine kinase-, Ras-, ERK1/2-, and AP-1-dependent pathway.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-218
    Nombre del producto:
    Ras Activation Assay Kit
  • Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. 8340364

    A cDNA has been isolated from human hippocampus that appears to encode a novel Na(+)-dependent, Cl(-)-independent, neutral amino acid transporter. The putative protein, designated SATT, is 529 amino acids long and exhibits significant amino acid sequence identity (39-44%) with mammalian L-glutamate transporters. Expression of SATT cDNA in HeLa cells induced stereospecific uptake of L-serine, L-alanine, and L-threonine that was not inhibited by excess (3 mM) 2-(methylamino)-isobutyric acid, a specific substrate for the System A amino acid transporter. SATT expression in HeLa cells did not induce the transport of radiolabeled L-cysteine, L-glutamate, or related dicarboxylates. Northern blot hybridization revealed high levels of SATT mRNA in human skeletal muscle, pancreas, and brain, intermediate levels in heart, and low levels in liver, placenta, lung, and kidney. SATT transport characteristics are similar to the Na(+)-dependent neutral amino acid transport activity designated System ASC, but important differences are noted. These include: 1) SATT's apparent low expression in ASC-containing tissues such as liver or placenta; 2) the lack of mutual inhibition between serine and cysteine; and 3) the lack of trans-stimulation. SATT may represent one of multiple activities that exhibit System ASC-like transport characteristics in diverse tissues and cell lines.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB8901
  • Isolation and characterization of monoclonal antibodies against calcium-activated neutral protease with low calcium sensitivity. 3020013

    Fifteen hybridomas secreting antibodies against calcium-activated neutral protease (CANP), especially those for rabbit muscle mCANP with low calcium sensitivity, have been produced by the cell fusion technique. Eight of the monoclonal antibodies belong to the class IgG1, one to the class IgG2a, and six to the class IgG2b. The antibodies from these clones were characterized with regard to their relative binding affinities to the large subunits (80K) and the small subunits (30K) of mCANP as well as mu CANP, which is another type of CANP with high calcium sensitivity. Fourteen antibodies bound only to the 80K subunit of mCANP and one antibody bound to the 80K subunit of both mCANP and mu CANP. These antibodies recognized rat mCANP but not chicken CANP, with the exception of one antibody. Examination of the effects of these antibodies on the enzyme activity of mCANP showed that six antibodies partially inhibited the enzyme activity and the others were noninhibitory. These monoclonal antibodies should be useful for analyzing the fine structure of CANPs and the mechanism of the activation of mCANP, and also for determining the intracellular localization of mCANP.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MABS1215
    Nombre del producto:
    Anti-Calpain I/II, large subunit Antibody, clone 1D10A7