Millipore Sigma Vibrant Logo
 

basic


2238 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (818)
  • (739)
  • (9)
  • (4)
  • (1)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • A noncoding RNA regulates the neurogenin1 gene locus during mouse neocortical development. 23027973

    The proneural basic helix-loop-helix (bHLH) transcription factor neurogenin1 (Neurog1) plays a pivotal role in neuronal differentiation during mammalian development. The spatiotemporal control of the Neurog1 gene expression is mediated by several specific enhancer elements, although how these elements regulate the Neurog1 locus has remained largely unclear. Recently it has been shown that a large number of enhancer elements are transcribed, but the regulation and function of the resulting transcripts have been investigated for only several such elements. We now show that an enhancer element located 5.8-7.0 kb upstream of the mouse Neurog1 locus is transcribed. The production of this transcript, designated utNgn1, is highly correlated with that of Neurog1 mRNA during neuronal differentiation. Moreover, knockdown of utNgn1 by a corresponding short interfering RNA inhibits the production of Neurog1 mRNA in response to induction of neuronal differentiation. We also found that production of utNgn1 is suppressed by polycomb group (PcG) proteins, which inhibit the expression of Neurog1. Our results thus suggest that a noncoding RNA transcribed from an enhancer element positively regulates transcription at the Neurog1 locus.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Nucleus-localized 21.5-kDa myelin basic protein promotes oligodendrocyte proliferation and enhances neurite outgrowth in coculture, unlike the plasma membrane-associated ... 23184356

    The classic myelin basic protein (MBP) family of central nervous system (CNS) myelin arises from transcription start site 3 of the Golli (gene of oligodendrocyte lineage) complex and comprises splice isoforms ranging in nominal molecular mass from 14 kDa to (full-length) 21.5 kDa. We have determined here a number of distinct functional differences between the major 18.5-kDa and minor 21.5-kDa isoforms of classic MBP with respect to oligodendrocyte (OLG) proliferation. We have found that, in contrast to 18.5-kDa MBP, 21.5-kDa MBP increases proliferation of early developmental immortalized N19-OLGs by elevating the levels of phosphorylated ERK1/2 and Akt1 kinases and of ribosomal protein S6. Coculture of N2a neuronal cells with N19-OLGs transfected with the 21.5-kDa isoform (or conditioned medium from), but not the 18.5-kDa isoform, caused the N2a cells to have increased neurite outgrowth and process branching complexity. These roles were dependent on subcellular localization of 21.5-kDa MBP to the nucleus and on the exon II-encoded segment, suggesting that the nuclear localization of early minor isoforms of MBP may play a crucial role in regulating and/or initiating myelin and neuronal development in the mammalian CNS.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB382
    Nombre del producto:
    Anti-Myelin Basic Protein Antibody, a.a. 129-138, clone 1
  • CpG methylation in exon 1 of transcription factor 4 increases with age in normal gastric mucosa and is associated with gene silencing in intestinal-type gastric cancers. 18635522

    Transcriptional factor 4 (TCF4), encoding a basic helix-loop-helix transcriptional factor, has recently been demonstrated as a causative gene for Pitt-Hopkins syndrome, a neurodevelopmental disease. Examination of gastric cancers using the restriction landmark genomic scanning technique revealed methylation at a NotI enzyme site in TCF4 intron 8 and further identified CpG dinucleotide hypermethylation in TCF4 exon 1, strongly associated with gene silencing in gastric cancer cell lines. Treatment with 5-aza-2'-deoxycytidine and/or trichostatin A restored TCF4 expression in TCF4-silenced gastric cancer cell lines. Real-time reverse transcription-polymerase chain reaction analysis of 77 paired primary gastric tumor samples revealed that 38% of analyzed tumors had a greater than 2-fold decrease in TCF4 expression compared with adjacent normal-appearing tissue, and the decrease significantly correlated with increased CpG methylation in TCF4 exon 1. Clinicopathologic data showed that decreased TCF4 expression occurred significantly more frequently in intestinal-type (22/37, 59%) than in diffuse-type (7/37, 19%) gastric cancers (P = 0.0004) and likewise more frequently in early (12/18, 67%) than in advanced (17/59, 29%) gastric cancers (P = 0.004). CpG methylation markedly increased with patient age among normal-appearing tissues, suggesting that CpG methylation in gastric mucosa may be one of the earliest events in carcinogenesis of intestinal-type gastric cancers. Furthermore, ectopic expression of TCF4 decreased cell growth in a gastric cancer cell line, and the knock down of TCF4 using small interfering RNA increased cell migration. Based on these results, we propose that the observed frequent epigenetic-mediated TCF4 silencing plays a role in tumor formation and progression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Cytokine signal transduction and the JAK family of protein tyrosine kinases. 8024540

    Cytokine receptors fall into two basic classes: those with their own intrinsic protein tyrosine kinase (PTK) domain, and those lacking a PTK domain. Nonetheless, PTK activity plays a fundamental role in the signal transduction processes lying downstream of both classes of receptor. It now seems likely that many of those cytokine receptors that lack their own PTK domain use members of the JAK family of PTKs to propagate their intracellular signals. Moreover, the involvement of the JAK kinases in a newly defined pathway which links membrane receptors directly to the activation of nuclear genes, via latent cytoplasmic transcription factors known as STATs (for Signal Transducers and Activators of Transcription), appears to be a theme common to cytokine receptors of both classes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Neurogenic neuroepithelial and radial glial cells generated from six human embryonic stem cell lines in serum-free suspension and adherent cultures. 17152062

    The great potential of human embryonic stem (hES) cells offers the opportunity both for studying basic developmental processes in vitro as well as for drug screening, modeling diseases, or future cell therapy. Defining protocols for the generation of human neural progenies represents a most important prerequisite. Here, we have used six hES cell lines to evaluate defined conditions for neural differentiation in suspension and adherent culture systems. Our protocol does not require fetal serum, feeder cells, or retinoic acid at any step, to induce neural fate decisions in hES cells. We monitored neurogenesis in differentiating cultures using morphological (including on-line follow up), immunocytochemical, and RT-PCR assays. For each hES cell line, in suspension or adherent culture, the same longitudinal progression of neural differentiation occurs. We showed the dynamic transitions from hES cells to neuroepithelial (NE) cells, to radial glial (RG) cells, and to neurons. Thus, 7 days after neural induction the majority of cells were NE, expressing nestin, Sox1, and Pax6. During neural proliferation and differentiation, NE cells transformed in RG cells, which acquired vimentin, BLBP, GLAST, and GFAP, proliferated and formed radial scaffolds. gamma-Aminobutyric acid (GABA)-positive and glutamate positive neurons, few oligodendrocyte progenitors and astrocytes were formed in our conditions and timing. Our system successfully generates human RG cells and could be an effective source for neuronal replacement, since RG cells predominantly generate neurons and provide them with support and guidance.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Cyclic AMP decreases the phosphorylation state of myelin basic proteins in rat brain cell cultures. 2433287

    Previous work has suggested that myelin basic proteins are phosphorylated prior to their appearance in the myelin sheath (Ulmer, J. B. and Braun, P. E. (1984) Dev. Neurosci. 6, 345-355). In order to corroborate this finding we have examined the phosphorylation of myelin basic proteins in rat brain cell cultures containing 14-17% oligodendrocytes. Incorporation of 32P into the 14-, 17-, 18.5-, and 21.5-kDa myelin basic proteins was observed in cells incubated with 32P at 7, 14, and 21 days in culture. Myelin basic proteins in 14-day cells incorporated 32P linearly until at least 120 min after the addition of isotope. The apparent half-life of myelin basic protein phosphate groups was determined to be approximately 80 min in pulse-chase experiments. However, this value may be an overestimation due to the presence of significant levels of acid-soluble radioactivity in the cells throughout the chase period. The presence of dibutyryl cAMP or 8-bromo-cAMP in the incubation medium substantially inhibited the incorporation of 32P into the myelin basic proteins at all time points studied. The presence of dibutyryl cAMP in the chase medium in pulse-chase experiments resulted in an increase in the turnover rate of [32P] phosphate in the myelin basic proteins. These results indicate that cAMP decreases the phosphorylation state of myelin basic proteins in oligodendrocytes by inhibiting the phosphorylation and/or stimulating the dephosphorylation of myelin basic proteins.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Region-specific immunoassays for human myelin basic protein. 2428830

    Three monoclonal antibodies reactive with human myelin basic protein have been used to develop immunoradiometric assays for this protein. Clone 1, a mouse IgG2a, is reactive with an epitope in the region 129-138. Clone 2, a mouse IgG1, is reactive with the region 119-131. Clone 12, a rat IgG, is reactive with the region 86-96. Competition experiments show that the reactions of Clone 1 and Clone 2 are mutually exclusive, probably because of steric effects. In contrast, when either Clone 1 or Clone 2 react they cause minimal interference with the subsequent binding of Clone 12. Less than 1 ng/ml of myelin basic protein can be detected in each of the two immunoradiometric assays developed. Clone 12 can also be used on its own in a competitive immunoassay to detect around 2 ng/ml. Using an extraction technique before the assay, serum or plasma can also be investigated. Assays for defined regions of myelin basic protein should prove valuable in identifying the products of myelin catabolism in patients with demyelinating disease.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Auto-regulation of the Sohlh1 gene by the SOHLH2/SOHLH1/SP1 complex: implications for early spermatogenesis and oogenesis. 25003626

    Tissue-specific basic helix-loop-helix (bHLH) transcription factor proteins often play essential roles in cellular differentiation. The bHLH proteins SOHLH2 and SOHLH1 are expressed specifically in spermatogonia and oocytes and are required for early spermatogonial and oocyte differentiation. We previously reported that knocking out Sohlh2 causes defects in spermatogenesis and oogenesis similar to those in Sohlh1-null mice, and that Sohlh1 is downregulated in the gonads of Sohlh2-null mice. We also demonstrated that SOHLH2 and SOHLH1 can form a heterodimer. These observations led us to hypothesize that the SOHLH2/SOHLH1 heterodimer regulates the Sohlh1 promoter. Here, we show that SOHLH2 and SOHLH1 synergistically upregulate the Sohlh1 gene through E-boxes upstream of the Sohlh1 promoter. Interestingly, we identified an SP1-binding sequence, called a GC-box, adjacent to these E-boxes, and found that SOHLH1 could bind to SP1. Furthermore, chromatin-immunoprecipitation analysis using testes from mice on postnatal day 8 showed that SOHLH1 and SP1 bind to the Sohlh1 promoter region in vivo. Our findings suggest that an SOHLH2/SOHLH1/SP1 ternary complex autonomously and cooperatively regulates Sohlh1 gene transcription through juxtaposed E- and GC-boxes during early spermatogenesis and oogenesis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Phorbol-Ester Mediated Suppression of hASH1 Synthesis: Multiple Ways to Keep the Level Down. 21441980

    Human achaete-scute homolog-1 (hASH1), encoded by the human ASCL1 gene, belongs to the family of basic helix-loop-helix transcription factors. hASH1 and its mammalian homolog Mash1 are expressed in the central and peripheral nervous system during development, and promote early neuronal differentiation. Furthermore, hASH1 is involved in the specification of neuronal subtype identities. Misexpression of the transcription factor is correlated with a variety of tumors, including lung cancer and neuroendocrine tumors. To gain insights into the molecular mechanisms of hASH1 regulation, we screened for conditions causing changes in hASH1 gene expression rate. We found that treatment of human neuroblastoma-derived Kelly cells with phorbol 12-myristate 13-acetate (PMA) resulted in a fast, strong and long-lasting suppression of hASH1 synthesis. Reporter gene assays with constructs, in which the luciferase activity was controlled either by the ASCL1 promoter or by the hASH1 mRNA untranslated regions (UTRs), revealed a mainly UTR-dependent mechanism. The hASH1 promoter activity was decreased only after 48 h of PMA administration. Our data indicate that different mechanisms acting consecutively at the transcriptional and post-transcriptional level are responsible for hASH1 suppression after PMA treatment. We provide evidence that short term inhibition of hASH1 synthesis is attributed to hASH1 mRNA destabilization, which seems to depend mainly on protein kinase C activity. Under prolonged conditions (48 h), hASH1 suppression is mediated by decreased promoter activity and inhibition of mRNA translation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501R
    Nombre del producto:
    Anti-Actin Antibody,clone C4
  • Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2. 19505873

    Transcription factor activating enhancer-binding protein 4 (AP-4) is a basic helix-loop-helix protein that binds to E-box elements. AP-4 has received increasing attention for its regulatory role in cell growth and development, including transcriptional repression of the human homolog of murine double minute 2 (HDM2), an important oncoprotein controlling cell growth and survival, by an unknown mechanism. Here we demonstrate that AP-4 binds to an E-box located in the HDM2-P2 promoter and represses HDM2 transcription in a p53-independent manner. Incremental truncations of AP-4 revealed that the C-terminal Gln/Pro-rich domain was essential for transcriptional repression of HDM2. To further delineate the molecular mechanism(s) of AP-4 transcriptional control and its potential implications, we used DNA-affinity purification followed by complementary quantitative proteomics, cICAT and iTRAQ labeling methods, to identify a previously unknown E-box-bound AP-4 protein complex containing 75 putative components. The two labeling methods complementarily quantified differentially AP-4-enriched proteins, including the most significant recruitment of DNA damage response proteins, followed by transcription factors, transcriptional repressors/corepressors, and histone-modifying proteins. Specific interaction of AP-4 with CCCTC binding factor, stimulatory protein 1, and histone deacetylase 1 (an AP-4 corepressor) was validated using AP-4 truncation mutants. Importantly, inclusion of trichostatin A did not alleviate AP-4-mediated repression of HDM2 transcription, suggesting a previously unidentified histone deacetylase-independent repression mechanism. In contrast, the complementary quantitative proteomics study suggested that transcription repression occurs via coordination of AP-4 with other transcription factors, histone methyltransferases, and/or a nucleosome remodeling SWI.SNF complex. In addition to previously known functions of AP-4, our data suggest that AP-4 participates in a transcriptional-regulating complex at the HDM2-P2 promoter in response to DNA damage.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo