Millipore Sigma Vibrant Logo
 

methyl


3685 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (1,005)
  • (69)
  • (19)
  • (5)
  • (2)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • The methyl binding domain 3/nucleosome remodelling and deacetylase complex regulates neural cell fate determination and terminal differentiation in the cerebral cortex. 25934499

    Chromatin-modifying complexes have key roles in regulating various aspects of neural stem cell biology, including self-renewal and neurogenesis. The methyl binding domain 3/nucleosome remodelling and deacetylation (MBD3/NuRD) co-repressor complex facilitates lineage commitment of pluripotent cells in early mouse embryos and is important for stem cell homeostasis in blood and skin, but its function in neurogenesis had not been described. Here, we show for the first time that MBD3/NuRD function is essential for normal neurogenesis in mice.Deletion of MBD3, a structural component of the NuRD complex, in the developing mouse central nervous system resulted in reduced cortical thickness, defects in the proper specification of cortical projection neuron subtypes and neonatal lethality. These phenotypes are due to alterations in PAX6+ apical progenitor cell outputs, as well as aberrant terminal neuronal differentiation programmes of cortical plate neurons. Normal numbers of PAX6+ apical neural progenitor cells were generated in the MBD3/NuRD-mutant cortex; however, the PAX6+ apical progenitor cells generate EOMES+ basal progenitor cells in reduced numbers. Cortical progenitor cells lacking MBD3/NuRD activity generate neurons that express both deep- and upper-layer markers. Using laser capture microdissection, gene expression profiling and chromatin immunoprecipitation, we provide evidence that MBD3/NuRD functions to control gene expression patterns during neural development.Our data suggest that although MBD3/NuRD is not required for neural stem cell lineage commitment, it is required to repress inappropriate transcription in both progenitor cells and neurons to facilitate appropriate cell lineage choice and differentiation programmes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. 16428440

    The human genome contains a number of methyl CpG binding proteins that translate DNA methylation into a physiological response. To gain insight into the function of MBD2 and MBD3, we first applied protein tagging and mass spectrometry. We show that MBD2 and MBD3 assemble into mutually exclusive distinct Mi-2/NuRD-like complexes, called MBD2/NuRD and MBD3/NuRD. We identified DOC-1, a putative tumor suppressor, as a novel core subunit of MBD2/NuRD as well as MBD3/NuRD. PRMT5 and its cofactor MEP50 were identified as specific MBD2/NuRD interactors. PRMT5 stably and specifically associates with and methylates the RG-rich N terminus of MBD2. Chromatin immunoprecipitation experiments revealed that PRMT5 and MBD2 are recruited to CpG islands in a methylation-dependent manner in vivo and that H4R3, a substrate of PRMT, is methylated at these loci. Our data show that MBD2/NuRD and MBD3/NuRD are distinct protein complexes with different biochemical and functional properties.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-213
    Nombre del producto:
    Anti-dimethyl-Histone H4 (Arg3) Antibody
  • Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri 18172620

    In this work, the contributions of triclosan and its metabolite methyl triclosan to the overall acute toxicity of wastewater were studied using Vibrio fischeri. The protocol used in this paper involved various steps. First, the aquatic toxicities of triclosan and methyl triclosan were determined for standard substances, and the 50% effective concentrations (EC50) were determined for these compounds. Second, the toxic responses to different mixtures of triclosan, methyl triclosan, and surfactants were studied in different water matrices, i.e., Milli-Q water, groundwater and wastewater, in order to evaluate (i) the antagonistic or synergistic effects, and (ii) the influence of the water matrices. Finally, chemical analysis was used in conjunction with the toxicity results in order to assess the aquatic toxicities of triclosan and its derivative in wastewaters. In this study, the toxicities of 45 real samples corresponding to the influents and effluents from eight wastewater treatment works (WWTW) were analyzed. Thirty-one samples were from a wastewater treatment plant (WWTP) equipped with two pilot-scale membrane bioreactors (MBR), and the influent and the effluent samples after various treatments were characterized via different chromatographic approaches, including solid-phase extraction (SPE), liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), and SPE coupled to gas chromatography–mass spectrometry (GC–MS). The toxicity was determined by measuring the bioluminescence inhibition of Vibrio fischeri. In order to complete the study and to extrapolate the results to different WWTPs, the toxicity to V. fischeri of samples from seven more plants was analyzed, as were their triclosan and methyl triclosan concentrations. Good agreement was established between the overall toxicity values and concentrations of the biocides, indicating that triclosan is one of the major toxic organic pollutants currently found in domestic wastewaters.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
  • The methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes. 15911693

    The farnesoid X receptor (FXR) is a nuclear receptor that functions as an endogenous sensor for bile acids (BAs). FXR is bound to and activated by bile acid, and chenodeoxycholic acid (CDCA) is the natural most active ligand. Upon activation, FXR heterodimerizes with the 9-cis retinoic X receptor (RXR) and regulates genes involved in cholesterol and BA homeostasis. 6-Ethyl CDCA (6-ECDCA) is a synthetic BA that binds FXR and induces gene transcription by recruiting coactivators, such as steroid receptor coactivator-1, with histone acetyltransferase activity. In addition to acetylation, histone methylation is critically involved in regulating eukaryotic gene expression. In the present study, we demonstrated that 6-ECDCA activates FXR to interacts with Protein Arginine Methyl-Transferase type I (PRMT1), which induces up-regulation of bile salt export pump (BSEP) and the small heterodimer partner (SHP) mRNA expression and causes a down-regulation of P450 cholesterol 7alpha-hydroxylase and Na(+) taurocholate cotransport peptide genes. Chromatin immunoprecipitation assay suggests that 6-ECDCA induces both the recruitment of PRMT1 and the H4 methylation to the promoter of BSEP and SHP genes. We also provide evidence that a methyltransferase inhibitor blocks the activation of FXR-responsive genes. Our results indicate that histone methylation, similar to acetylation, regulates transcriptional activation of genes involved in cholesterol and BAs homeostasis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-213
    Nombre del producto:
    Anti-dimethyl-Histone H4 (Arg3) Antibody
  • Study of methyl transferase (G9aMT) and methylated histone (H3-K9) expressions in unexplained recurrent spontaneous abortion (URSA) and normal early pregnancy. 21606120

    We investigated the expression of methyl transferase G9a and methylated histone H3-K9 in fresh human decidual/endometrial tissue of 12 normal early pregnancies and 15 unexplained recurrent spontaneous abortions (URSA). The samples were obtained through dilatation and curettage and collected as per strict inclusion-exclusion criteria. The tissue was subjected to immunohistochemical analysis (IHC), western blotting (WB) and RT-PCR analysis. The results demonstrated methyl transferase G9a to have a lower expression in abortions when compared with that in normal pregnancy (P less than 0.05). The sensitivity of RT-PCR, IHC and WB were respectively 66.67, 75 and 71.43%, while specificity of the same were 66.67, 60 and 78.92%, respectively. Methylated histone H3-K9 was significantly lower (P less than 0.0001) in URSA tissues than in controls. This study suggests that methylation may cause URSA and indicates the need for further work to explore the role of methylation in URSA and its possible prevention through locally acting methylating/demethylating agents.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-442
    Nombre del producto:
    Anti-trimethyl-Histone H3 (Lys9) Antibody
  • Early feeding of rainbow trout ( Oncorhynchus mykiss) with methionine-deficient diet over a 2 week period: consequences for liver mitochondria in juveniles 31488624

    Methionine is a key factor in modulating the cellular availability of the main biological methyl donor S-adenosylmethionine (SAM), which is required for all biological methylation reactions including DNA and histone methylation. As such, it represents a potential critical factor in nutritional programming. Here, we investigated whether early methionine restriction at first feeding could have long-term programmed metabolic consequences in rainbow trout. For this purpose, trout fry were fed with either a control diet (C) or a methionine-deficient diet (MD) for 2 weeks from the first exogenous feeding. Next, fish were subjected to a 5 month growth trial with a standard diet followed by a 2 week challenge (with the MD or C diet) to test the programming effect of the early methionine restriction. The results showed that, whatever the dietary treatment of fry, the 2 week challenge with the MD diet led to a general mitochondrial defect associated with an increase in endoplasmic reticulum stress, mitophagy and apoptosis, highlighting the existence of complex cross-talk between these different functions. Moreover, for the first time, we also observed that fish fed the MD diet at the first meal later exhibited an increase in several critical factors of mitophagy, hinting that the early nutritional stimulus with methionine deficiency resulted in long-term programming of this cell function. Together, these data extend our understanding of the role of dietary methionine and emphasize the potential for this amino acid in the application of new feeding strategies, such as nutritional programming, to optimize the nutrition and health of farmed fish.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14. 23394613

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells.Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation.Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis.Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • A stress survival response in retinal cells mediated through inhibition of the serine/threonine phosphatase PP2A. 20636478

    Cell survival signalling involving the PI3K/Akt survival pathway can be negatively regulated by several phosphatases including PP2A. When retinal-derived 661W cells were subjected to trophic factor deprivation this initiated a survival response through inhibition of the activity of PP2A and subsequent upregulation of the Erk and Akt survival pathways. We show this survival response via inhibition of PP2A activity was due in part to increased reactive oxygen species production when retinal cells were deprived of trophic factors. Inhibition of PP2A activity was mediated by a rapid and transient increase in phosphorylation at Tyr307, accompanied by an increase in demethylation and a decrease in the methylated form. Pre-treatment with N-acetyl-L-cysteine, which is involved in scavenging reactive oxygen species, prevented PP2A inhibition and subsequent upregulation of survival pathways. Pre-treatment with the Src family kinase inhibitor PP2 resulted in approximately 50% reduction in cellular levels of phospho-PP2A in trophic factor-deprived 661W cells, suggesting an Src tyrosine kinase had a role to play in this redox regulation of cell survival. We observed similar events in the rd10 mouse retina where there was an increased survival response prior to retinal cell death mediated through an increase in both phospho-PP2A and phospho-Gsk. Together, these results demonstrate that when retinal cells are stressed there is an initial struggle to survive, mediated through inhibition of PP2A and subsequent upregulation of survival pathways, and that these events occur simultaneously with production of reactive oxygen species, thus suggesting an important cell-signalling role for reactive oxygen species.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-334
  • Differentiation of postnatal neural stem cells into glia and functional neurons on laminin-coated polymeric substrates. 18491954

    A series of polymeric biomaterials, including poly(methyl acrylate), chitosan, poly(ethyl acrylate) (PEA), poly(hydroxyethyl acrylate) (PHEA), and a series of random copolymers containing ethyl acrylate, hydroxyethyl acrylate, and methyl acrylate were tested in vitro as culture substrates and compared for their effect on the differentiation of neural stem cells (NSCs) obtained from the subventricular zone of postnatal rats. Immunocytochemical assay for specific markers and scanning electron microscopy techniques were employed to determine the adhesion of the cultured NSCs to the different biomaterials and the respective neuronal differentiation. The functional properties and the membrane excitability of differentiated NSCs were investigated using a patch-clamp. The results show that the substrate's surface chemistry influences cell attachment and neuronal differentiation, probably through its influence on adsorbed laminin, and that copolymers based on PEA and PHEA in a narrow composition window are suitable substrates to promote cell attachment and differentiation of adult NSCs into functional neurons and glia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB345
    Nombre del producto:
    Anti-O4 Antibody, clone 81
  • MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. 20711185

    The X-linked transcriptional repressor methyl CpG binding protein 2 (MeCP2), known for its role in the neurodevelopmental disorder Rett syndrome, is emerging as an important regulator of neuroplasticity in postmitotic neurons. Cocaine addiction is commonly viewed as a disorder of neuroplasticity, but the potential involvement of MeCP2 has not been explored. Here we identify a key role for MeCP2 in the dorsal striatum in the escalating cocaine intake seen in rats with extended access to the drug, a process that mimics the increasingly uncontrolled cocaine use seen in addicted humans. MeCP2 regulates cocaine intake through homeostatic interactions with microRNA-212 (miR-212) to control the effects of cocaine on striatal brain-derived neurotrophic factor (BDNF) levels. These data suggest that homeostatic interactions between MeCP2 and miR-212 in dorsal striatum may be important in regulating vulnerability to cocaine addiction.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo