Millipore Sigma Vibrant Logo
 

synaptophysin


483 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (482)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (259)
  • (218)
  • (5)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Calpain 2 activated through N-methyl-D-aspartic acid receptor signaling cleaves CPEB3 and abrogates CPEB3-repressed translation in neurons. 22711986

    Long-term memory requires the activity-dependent reorganization of the synaptic proteome to modulate synaptic efficacy and consequently consolidate memory. Activity-regulated RNA translation can change the protein composition at the stimulated synapse. Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein that represses translation of its target mRNAs in neurons, while activation of N-methyl-d-aspartic acid (NMDA) receptors alleviates this repression. Although recent research has revealed the mechanism of CPEB3-inhibited translation, how NMDA receptor signaling modulates the translational activity of CPEB3 remains unclear. This study shows that the repressor CPEB3 is degraded in NMDA-stimulated neurons and that the degradation of CPEB3 is accompanied by the elevated expression of CPEB3's target, epidermal growth factor receptor (EGFR), mostly at the translational level. Using pharmacological and knockdown approaches, we have identified that calpain 2, activated by the influx of calcium through NMDA receptors, proteolyzes the N-terminal repression motif but not the C-terminal RNA-binding domain of CPEB3. As a result, the calpain 2-cleaved CPEB3 fragment binds to RNA but fails to repress translation. Therefore, the cleavage of CPEB3 by NMDA-activated calpain 2 accounts for the activity-related translation of CPEB3-targeted RNAs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Neuroinflammatory and behavioural changes in the Atp7B mutant mouse model of Wilson\'s disease. 21517843

    Wilson\'s disease (WD) is caused by mutations in the copper transporting ATPase 7B (Atp7b). Patients present with liver pathology or behavioural disturbances. Studies on rodent models for WD so far mainly focussed on liver, not brain. The effect of knockout of atp7b on sensori-motor and cognitive behaviour, as well as neuronal number, inflammatory markers, copper and synaptic proteins in brain were studied in so-called toxic milk mice. Copper accumulated in striatum and hippocampus of toxic milk mice, but not in cerebral cortex. Inflammatory markers were increased in striatum and corpus callosum, but not in cerebral cortex and hippocampus, whereas neuronal numbers were unchanged. Toxic milk mice were mildly impaired in the rotarod and cylinder test and unable to acquire spatial memory in the Morris water maze. Despite the latter observation only synaptophysin of a number of synaptic proteins, was altered in the hippocampus of toxic milk mice. In addition to disturbances in neuronal signalling by increased brain copper, inflammation and inflammatory signalling from the periphery to the brain might add to the behavioural disturbances in the toxic milk mice. These mice can be used to evaluate therapeutic strategies to alleviate behavioural disturbances and cerebral pathology observed in WD.© 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5572
    Nombre del producto:
    Anti-NMDAR2A Antibody
  • Characterization of olfactory bulb glomeruli in schizophrenia. 15946825

    Olfactory deficits, observed in schizophrenia, may be associated with a disruption of synaptic transmission in the olfactory system. Using immunohistochemistry and optical densitometry, we assessed the integrity of the synaptic connection between olfactory receptor neurons and olfactory bulb target neurons in schizophrenia by comparing the level of eight proteins, expressed in the olfactory bulb glomeruli, among schizophrenia and control subjects. In schizophrenia, no change was observed in the levels of OMP, GAP43 and NCAM, proteins expressed by olfactory receptor neurons, suggesting an intact innervation of the olfactory bulb by these neurons. This was supported by the absence of change in calbindin level, which has been shown to decrease after the destruction of the olfactory epithelium. The level of synaptophysin, a pre-synaptic protein, was also unchanged. These findings suggested that axons of olfactory receptor neurons establish synapses with their olfactory bulb targets in schizophrenia. The absence of change in the level of poorly phosphorylated neurofilament of moderate and high molecular weight (NFM/HP) suggested no lack of dendritic innervation despite a previously seen reduction of glomerular MAP2 level in schizophrenia subjects. This and above findings were consistent with the absence of change in the level of beta-tubulin III, a protein expressed by neurons of both olfactory epithelium and bulb. Finally, we noted no significant decrease in trkB level, a neurotrophin receptor involved in the olfactory epithelium maintenance. This study showed no evidence of major structural alteration of the synapse between the olfactory epithelium and bulb in schizophrenia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1778
  • Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. 19326469

    Cell replacement strategies for degenerative and traumatic diseases of the nervous system depend on the functional integration of grafted cells into host neural circuitry, a condition necessary for the propagation of physiological signals and, perhaps, targeting of trophic support to injured neurons. We have recently shown that human neural stem cell (NSC) grafts ameliorate motor neuron disease in SOD1 transgenic rodents. Here we study structural aspects of integration of neuronally differentiated human NSCs in the motor circuitry of SOD1 G93A rats. Human NSCs were grafted into the lumbar protuberance of 8-week-old SOD1 G93A rats; the results were compared to those on control Sprague-Dawley rats. Using pre-embedding immuno-electron microscopy, we found human synaptophysin (+) terminals contacting the perikarya and proximal dendrites of host alpha motor neurons. Synaptophysin (+) terminals had well-formed synaptic vesicles and were associated with membrane specializations primarily in the form of symmetrical synapses. To analyze the anatomy of motor circuits engaging differentiated NSCs, we injected the retrograde transneuronal tracer Bartha-pseudorabies virus (PRV) or the retrograde marker cholera toxin B (CTB) into the gastrocnemius muscle/sciatic nerve of SOD1 rats before disease onset and also into control rats. With this tracing, NSC-derived neurons were labeled with PRV but not CTB, a pattern suggesting that PRV entered NSC-derived neurons via transneuronal transfer from host motor neurons but not via direct transport from the host musculature. Our results indicate an advanced degree of structural integration, via functional synapses, of differentiated human NSCs into the segmental motor circuitry of SOD1-G93A rats.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB332
  • Synaptophysin immunogold labelling of synapses decreases in dentate gyrus of the hippocampus of aged rats. 12965244

    Synaptophysin expression was assessed in dentate gyrus prepared from aged (22 months) and young (4 months) rats by immunoblotting and post-embedding immunolabelling at electron microscope level. Immunoblotting showed qualitatively that there was a marked reduction in synaptophysin expression in synaptosomes of aged compared with young rats. Immunogold labelling studies in the medial molecular layer of the dentate gyrus demonstrated that gold particles were restricted to pre-synaptic boutons, and were present mainly on the membranes of the synaptic vesicles or occasionally inside vesicles. In aged rats, immunolabelling patterns and the density of immunogold particles per pre-synaptic bouton were almost 50% lower than in younger rats. However, because boutons were larger in older rats the actual labelling density per unit area of bouton (3.77) was even lower than in the young rats (7.74). The role of synaptophysin in neural plasticity and ageing should be further examined.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB368
  • Phospholipase A2 inhibitors protect against prion and Abeta mediated synapse degeneration. 20374666

    An early event in the neuropathology of prion and Alzheimer's diseases is the loss of synapses and a corresponding reduction in the level of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission. The molecular mechanisms involved in synapse degeneration in these diseases are poorly understood. In this study the process of synapse degeneration was investigated by measuring the synaptophysin content of cultured neurones incubated with the prion derived peptide (PrP82-146) or with Abeta1-42, a peptide thought to trigger pathogenesis in Alzheimer's disease. A pharmacological approach was used to screen cell signalling pathways involved in synapse degeneration.Pre-treatment with phospholipase A2 inhibitors (AACOCF3, MAFP and aristolochic acids) protected against synapse degeneration in cultured cortical and hippocampal neurones incubated with PrP82-146 or Abeta1-42. Synapse degeneration was also observed following the addition of a specific phospholipase A2 activating peptide (PLAP) and the addition of PrP82-146 or Abeta1-42 activated cytoplasmic phospholipase A2 within synapses. Activation of phospholipase A2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B, Hexa-PAF and CV6029) protected against synapse degeneration induced by PrP82-146, Abeta1-42 and PLAP. PAF facilitated the production of prostaglandin E2, which also caused synapse degeneration and pre-treatment with the prostanoid E receptor antagonist AH13205 protected against PrP82-146, Abeta1-42 and PAF induced synapse degeneration.Our results are consistent with the hypothesis that PrP82-146 and Abeta1-42trigger abnormal activation of cytoplasmic phospholipase A2 resident within synapses, resulting in elevated levels of PAF and prostaglandin E2that cause synapse degeneration. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse degeneration seen during Alzheimer's or prion diseases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB368
  • Increase of close homolog of cell adhesion molecule L1 in primary afferent by nerve injury and the contribution to neuropathic pain. 21452236

    The L1 family of cell adhesion molecules (L1-CAMs) is known to be involved in various neuronal functions such as cell adhesion, axon guidance, and synaptic plasticity. We investigated the detailed expression/changes of a close homolog of the L1 cell adhesion molecule (CHL1) after nerve injury and the possible role on neuropathic pain using the rat spared nerve injury (SNI) model. SNI induced the expression of CHL1 in L4/5 DRG neurons, particularly in small-size injured neurons and in satellite cells. In the spinal cord, CHL1 immunoreactivity increased mainly in laminae I-II of the dorsal horn on the side ipsilateral to the nerve injury. Ultrastructural study clarified the fine localization of CHL1 in axons of primary afferents in the dorsal horn. CHL1 immunoreactivities were localized in the adherence such as axon-axon, axon-dorsal horn neurons (dendrite, soma), and axon-glial cells (astrocyte and microglia). Experimental inhibition of CHL1 adhesion by intrathecal administration of the antibody for CHL1 extracellular domain significantly prevented and reversed SNI-induced mechanical allodynia. Thus, alterations of CHL1 may be involved in the structural plasticity after peripheral nerve injury and have important roles in neuropathic pain.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB368
  • Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. 22962604

    Physical exercise constitutes an innovative strategy to treat deficits associated with stroke through the promotion of BDNF-dependent neuroplasticity. However, there is no consensus on the optimal intensity/duration of exercise. In addition, whether previous stroke changes the effect of exercise on the brain is not known. Therefore, the present study compared the effects of a clinically-relevant form of exercise on cerebral BDNF levels and localization in control versus stroke rats. For this purpose, treadmill exercise (0.3 m/s, 30 min/day, for 7 consecutive days) was started in rats with a cortical ischemic stroke after complete maturation of the lesion or in control rats. Sedentary rats were run in parallel. Mature and proBDNF levels were measured on the day following the last boot of exercise using Western blotting analysis. Total BDNF levels were simultaneously measured using ELISA tests. As compared to the striatum and the hippocampus, the cortex was the most responsive region to exercise. In this region, exercise resulted in a comparable increase in the production of mature BDNF in intact and stroke rats but increased proBDNF levels only in intact rats. Importantly, levels of mature BDNF and synaptophysin were strongly correlated. These changes in BDNF metabolism coincided with the appearance of intense BDNF labeling in the endothelium of cortical vessels. Notably, ELISA tests failed to detect changes in BDNF forms. Our results suggest that control beings can be used to find conditions of exercise that will result in increased mBDNF levels in stroke beings. They also suggest cerebral endothelium as a potential source of BDNF after exercise and highlight the importance to specifically measure the mature form of BDNF to assess BDNF-dependent plasticity in relation with exercise.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo