Millipore Sigma Vibrant Logo
 

differentiation media


1156 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (1,080)
  • (2)
  • (1)
  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells. 22529032

    Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.
    Document Type:
    Reference
    Product Catalog Number:
    AB5726
    Product Catalog Name:
    Anti-Dlx2 Antibody
  • Reversal of terminal differentiation mediated by p107 in Rb-/- muscle cells. 8197461

    The terminal differentiation of mammalian muscle cells requires the tumor suppressor retinoblastoma protein (Rb). Unlike their wild-type counterparts, multinucleated myotubes from mouse cells deficient in Rb (Rb-/-) were induced by serum to re-enter the cell cycle. Development of the myogenic phenotype in Rb-/- cells correlated with increased expression of p107, which interacted with myogenic transcription factors. Serum-induced cell cycle reentry, on the other hand, correlated with decreased p107 expression. Thus, although p107 could substitute for Rb as a cofactor for differentiation, it could not maintain the terminally differentiated state in Rb-/- myotubes.
    Document Type:
    Reference
    Product Catalog Number:
    06-137
  • Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress. 23236461

    The development of large tissue engineered bone remains a challenge in vitro, therefore the use of hybrid-implants might offer a bridge between tissue engineering and dense metal or ceramic implants. Especially the combination of the pseudoelastic implant material Nitinol (NiTi) with adipose derived stem cells (ASCs) opens new opportunities, as ASCs are able to differentiate osteogenically and therefore enhance osseointegration of implants. Due to limited knowledge about the effects of NiTi-structures manufactured by selective laser melting (SLM) on ASCs the study started with an evaluation of cytocompatibility followed by the investigation of the use of SLM-generated 3-dimensional NiTi-structures preseeded with ASCs as osteoimplant model. In this study we could demonstrate for the first time that osteogenic differentiation of ASCs can be induced by implant-mediated mechanical stimulation without support of osteogenic cell culture media. By use of an innovative implant design and synthesis via SLM-technique we achieved high rates of vital cells, proper osteogenic differentiation and mechanically loadable NiTi-scaffolds could be achieved.
    Document Type:
    Reference
    Product Catalog Number:
    AB755P
    Product Catalog Name:
    Anti-Rat Collagen Type I Antibody
  • Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies. 22072598

    Biological treatment options for the repair of intervertebral disc damage have been suggested for patients with chronic low back pain. The aim of this study was to investigate possible cell types and gel carriers for use in the regenerative treatment of degenerative intervertebral discs (IVD). In vitro: human mesenchymal cells (hMSCs), IVD cells (hDCs), and chondrocytes (hCs) were cultivated in three gel types: hyaluronan gel (Durolane®), hydrogel (Puramatrix®), and tissue-glue gel (TISSEEL®) in chondrogenic differentiation media for 9 days. Cell proliferation and proteoglycan accumulation were evaluated with microscopy and histology. In vivo: hMSCs or hCs and hyaluronan gel were co-injected into injured IVDs of six minipigs. Animals were sacrificed at 3 or 6 months. Transplanted cells were traced with anti-human antibodies. IVD appearance was visualized by MRI, immunohistochemistry, and histology. Hyaluronan gel induced the highest cell proliferation in vitro for all cell types. Xenotransplanted hMSCs and hCs survived in porcine IVDs for 6 months and produced collagen II in all six animals. Six months after transplantation of cell/gel, pronounced endplate changes indicating severe IVD degeneration were observed at MRI in 1/3 hC/gel, 1/3 hMSCs/gel and 1/3 gel only injected IVDs at MRI and 1/3 hMSC/gel, 3/3 hC/gel, 2/3 gel and 1/3 injured IVDs showed positive staining for bone mineralization. In 1 of 3 discs receiving hC/gel, in 1 of 3 receiving hMSCs/gel, and in 1 of 3 discs receiving gel alone. Injected IVDs on MRI results in 1 of 3 hMSC/gel, in 3 of 3 hC/gel, in 2 of 3 gel, and in 1 of 3 injured IVDs animals showed positive staining for bone mineralization. The investigated hyaluronan gel carrier is not suitable for use in cell therapy of injured/degenerated IVDs. The high cell proliferation observed in vitro in the hyaluronan could have been a negative factor in vivo, since most cell/gel transplanted IVDs showed degenerative changes at MRI and positive bone mineralization staining. However, this xenotransplantation model is valuable for evaluating possible cell therapy strategies for human degenerated IVDs. Copyright © 2011 John Wiley & Sons, Ltd.Copyright © 2011 John Wiley & Sons, Ltd.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1281
    Product Catalog Name:
    Anti-Nuclei Antibody, clone 235-1
  • Non-canonical role for the TRAIL receptor DR5/FADD/caspase pathway in the regulation of MyoD expression and skeletal myoblast differentiation. 19523746

    We report herein that the TRAIL receptor DR5/FADD/caspase pathway plays a role in skeletal myoblast differentiation through modulation of the expression of the muscle regulatory transcription factor MyoD. Specifically, treatment with the selective caspase 3 inhibitor DEVD-fmk or the selective caspase 8 inhibitor IETD-fmk in growth media (GM), prior to culture in differentiation media (DM), inhibited differentiation. Further, this treatment resulted in decreased levels of MyoD message and protein. We next explored a role for the TRAIL receptor DR5/FADD pathway. We found that expression of either dominant negative (dn) FADD or dominant negative (dn) DR5 also resulted in decreased levels of MyoD mRNA and protein and blocked differentiation. This decreased level of MyoD mRNA was not a consequence of altered stability. Treatment with TSA, an inhibitor of histone deacetylases (HDACs), allowed MyoD expression in myoblasts expressing dnDR5. Finally, acetylation of histones associated with the distal regulatory region (DRR) enhancer of MyoD was decreased in myoblasts expressing dnDR5. Thus, our data suggests a non-canonical role for the TRAIL receptor/FADD pathway in the regulation of MyoD expression and skeletal myoblast differentiation.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system. 24405888

    Cell supplementation to the herniated or degenerated intervertebral disc (IVD) is a potential strategy to promote tissue regeneration and slow disc pathology. Human umbilical cord mesenchymal stromal cells (HUCMSCs) - originating from the Wharton's jelly - remain an attractive candidate for such endeavors with their ability to differentiate into multiple lineages. Previously, mesenchymal stem cells (MSCs) have been studied as a potential source for disc tissue regeneration. However, no studies have demonstrated that MSCs can regenerate matrix with unique characteristics matching that of immature nucleus pulposus (NP) tissues of the IVD. In our prior work, immature NP cells were found to express specific laminin isoforms and laminin-binding receptors that may serve as phenotypic markers for evaluating MSC differentiation to NP-like cells. The goal of this study is to evaluate these markers and matrix synthesis for HUCMSCs cultured in a laminin-rich pseudo-three-dimensional culture system.HUCMSCs were seeded on top of Transwell inserts pre-coated with Matrigel™, which contained mainly laminin-111. Cells were cultured under hypoxia environment with three differentiation conditions: NP differentiation media (containing 2.5% Matrigel™ solution to provide for a pseudo-three-dimensional laminin culture system) with no serum, or the same media supplemented with either insulin-like growth factor-1 (IGF-1) or transforming growth factor-β1 (TGF-β1). Cell clustering behavior, matrix production and the expression of NP-specific laminin and laminin-receptors were evaluated at days 1, 7, 13 and 21 of culture.Data show that a pseudo-three-dimensional culture condition (laminin-1 rich) promoted HUCMSC differentiation under no serum conditions. Starting at day 1, HUCMSCs demonstrated a cell clustering morphology similar to that of immature NP cells in situ and that observed for primary immature NP cells within the similar laminin-rich culture system (prior study). Differentiated HUCMSCs under all conditions were found to contain glycosaminoglycan, expressed extracellular matrix proteins of collagen II and laminin α5, and laminin receptors (integrin α3 and β4 subunits). However, neither growth factor treatment generated distinct differences in NP-like phenotype for HUCMSC as compared with no-serum conditions.HUCMSCs have the potential to differentiate into cells sharing features with immature NP cells in a laminin-rich culture environment and may be useful for IVD cellular therapy.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. 18580448

    OBJECTIVES: Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. METHODS: Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. RESULTS: Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. CONCLUSIONS: Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.
    Document Type:
    Reference
    Product Catalog Number:
    AB5922
  • Changes in Musashi-1 subcellular localization correlate with cell cycle exit during postnatal retinal development. 21320487

    RNA-binding proteins, and in particular, the Musashi genes, function as essential regulators of progenitor functioning in both the developing and adult organism. In this report, we characterize the differential subcellular distribution of Musashi-1 in cells engaged in either proliferating or differentiating contexts in the developing mouse retina, and in cultured Müller glia. During retinal cell differentiation, Musashi-1 immunoreactivity shifts from exclusively cytoplasmic in retinal progenitor cells, to predominantly nuclear localization in differentiating neurons. This nuclear shift is transient, with localization in the adult retina becoming predominantly perinuclear and cytoplasmic in Müller glia and photoreceptors. A correlation between cell cycle progression and subcellular distribution of Musashi-1 is observed in passageable, adult Müller glial cells in vitro. Furthermore, treatment of Müller cultures with neuron-promoting differentiation media induces asymmetric cytoplasmic Musashi-1 immunoreactivity in dividing daughter cells. The observed shifts in subcellular Musashi-1 localization are consistent with contrasting roles for Musashi-1 during cell proliferation and differentiation. These data provide evidence that nuclear, and cytoplasmic sequestering of Musashi-1 in retinal cells is context-specific, and may contribute to downstream functioning of Musashi-1.
    Document Type:
    Reference
    Product Catalog Number:
    AB5977
    Product Catalog Name:
    Anti-Musashi-1 Antibody
  • The muscle regulatory transcription factor MyoD participates with p53 to directly increase the expression of the pro-apoptotic Bcl2 family member PUMA. 28918507

    The muscle regulatory transcription factor MyoD is a master regulator of skeletal myoblast differentiation. We have previously reported that MyoD is also necessary for the elevated expression of the pro-apoptotic Bcl2 family member PUMA, and the ensuing apoptosis, that occurs in a subset of myoblasts induced to differentiate. Herein, we report the identification of a functional MyoD binding site within the extended PUMA promoter. In silico analysis of the murine PUMA extended promoter revealed three potential MyoD binding sites within 2 kb of the transcription start site. Expression from a luciferase reporter construct containing this 2 kb fragment was enhanced by activation of MyoD in both myoblasts and fibroblasts and diminished by silencing of MyoD in myoblasts. Experiments utilizing truncated versions of this promoter region revealed that the potential binding site at position - 857 was necessary for expression. Chromatin immunoprecipitation (ChIP) analysis confirmed binding of MyoD to the DNA region encompassing position - 857. The increase in MyoD binding to the PUMA promoter as a consequence of culture in differentiation media (DM) was comparable to the increase in MyoD binding at the myogenin promoter and was diminished in myoblasts silenced for MyoD expression. Finally, ChIP analysis using an antibody specific for the transcription factor p53 demonstrated that, in myoblasts silenced for MyoD expression, p53 binding to the PUMA promoter was diminished in response to culture in DM. These data indicate that MyoD plays a direct role in regulating PUMA expression and reveal functional consequences of MyoD expression on p53 mediated transcription of PUMA.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines. 19834648

    Our current understanding of muscle and adipose tissue development has been largely restricted to the study of murine myogenic and adipogenic cell lines, since attempts to establish these cell lines from other species have met with only limited success. Here we report that a spontaneously immortalized bovine embryonic fibroblast cell line (BEFS) undergoes differentiation into adipogenic or myogenic lineages when ectopically transduced with PPARgamma2 (an adipogenic lineage determinant) or MyoD (a myogenic lineage determinant) and grown in adipogenic and myogenic differentiation culture media (ADCM and MDCM, respectively). We also found that PPARgamma2-overexpressing BEFS cells (BEFS-PPARgamma2) grown in ADCM with or without the PPARgamma2 ligand, troglitazone, preferentially differentiate into adipogenic cells in the presence of ectopic MyoD expression. Ectopic expression of PPARgamma2 in the inducible MyoD-overepxressing BEFS cells (BEFS-TetOn-MyoD) completely suppresses myogenic differentiation and leads to a significant increase in adipogenic differentiation, suggesting that the adipogenic differentiation program might be dominant. Therefore, BEFS, BEFS-PPARgamma2, and BEFS-TetOn-MyoD would be a valuable biological model for understanding a fundamental principle underlying myogenic and adipogenic development, and for isolating various genetic and chemical factors that enable muscle and adipocyte differentiation.
    Document Type:
    Reference
    Product Catalog Number:
    AB907
    Product Catalog Name:
    Anti-Desmin Antibody