Millipore Sigma Vibrant Logo
 

76-05-1


7 Results Búsqueda avanzada  
Mostrar
Documentos (4)
Páginas (0)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (3)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • «
  • <
  • 1
  • >
  • »
  • In vivo significance of ITK-SLP-76 interaction in cytokine production. 20457812

    In vitro data have suggested that activation of the inducible T-cell kinase (ITK) requires an interaction with the adaptor protein SLP-76. One means for this interaction involves binding of the ITK SH3 domain to the polyproline-rich (PR) region of SLP-76. However, the biological significance of this association in live cells and the consequences of its disruption have not been demonstrated. Here, we utilized a polyarginine-rich, cell-permeable peptide that represents the portion of the SLP-76 PR region that interacts with the ITK SH3 domain as a competitive inhibitor to disrupt the association between ITK and SLP-76 in live cells. We demonstrate that treatment of cells with this peptide, by either in vitro incubation or intraperitoneal injection of the peptide in mice, inhibits the T-cell receptor (TCR)-induced association between ITK and SLP-76, recruitment and transphosphorylation of ITK, actin polarization at the T-cell contact site, and expression of Th2 cytokines. The inhibition is specific, as indicated by lack of effects by the polyarginine vehicle alone or a scrambled sequence of the cargo peptide. In view of the role of ITK as a regulator of Th2 cytokine expression, the data underscore the significance of ITK as a target for pharmacological intervention.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-983
    Nombre del producto:
    Anti-GADS Antibody
  • Proteomic profiling revealed the functional networks associated with mitotic catastrophe of HepG2 hepatoma cells induced by 6-bromine-5-hydroxy-4-methoxybenzaldehyde. 21419150

    Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human hepatoma HepG2 cells. We used proteomic profiling to identify the differentially expressed proteins underlying mitotic catastrophe. A total of 137 differentially expressed proteins (76 upregulated and 61 downregulated proteins) were identified. Some of the changed proteins have previously been associated with mitotic catastrophe, such as DNA-PKcs, FoxM1, RCC1, cyclin E, PLK1-pT210, 14-3-3σ and HSP70. Multiple isoforms of 14-3-3, heat-shock proteins and tubulin were upregulated. Analysis of functional significance revealed that the 14-3-3-mediated signaling network was the most significantly enriched for the differentially expressed proteins. The modulated proteins were found to be involved in macromolecule complex assembly, cell death, cell cycle, chromatin remodeling and DNA repair, tubulin and cytoskeletal organization. These findings revealed the overall molecular events and functional signaling networks associated with spindle disruption and mitotic catastrophe.Copyright © 2011 Elsevier Inc. All rights reserved.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-636
    Nombre del producto:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301
  • Na+-K+-ATPase properties in rat heart and skeletal muscle 3 mo after coronary artery ligation. 15817721

    This study was designed to determine whether chronic heart failure (CHF) results in changes in Na(+)-K(+)-ATPase properties in heart and skeletal muscles of different fiber-type composition. Adult rats were randomly assigned to a control (Con; n = 8) or CHF (n = 8) group. CHF was induced by ligation of the left main coronary artery. Examination of Na(+)-K(+)-ATPase activity (means +/- SE) 12 wk after the ligation measured, using the 3-O-methylfluorescein phosphatase assay (3-O-MFPase), indicated higher (P less than 0.05) levels in soleus (Sol) (250 +/- 13 vs. 179 +/- 18 nmol.mg protein(-1).h(-1)) and lower (P less than 0.05) levels in diaphragm (Dia) (200 +/- 12 vs. 272 +/- 27 nmol.mg protein(-1).h(-1)) and left ventricle (LV) (760 +/- 62 vs. 992 +/- 16 nmol.mg protein(-1).h(-1)) in CHF compared with Con, respectively. Na(+)-K(+)-ATPase protein content, measured by the [(3)H]ouabain binding technique, was higher (P less than 0.05) in white gastrocnemius (WG) (166 +/- 12 vs. 135 +/- 7.6 pmol/g wet wt) and lower (P less than 0.05) in Sol (193 +/- 20 vs. 260 +/- 8.6 pmol/g wet wt) and LV (159 +/- 10 vs. 221 +/- 10 pmol/g wet wt) in CHF compared with Con, respectively. Isoform content in CHF, measured by Western blot techniques, showed both increases (WG; P less than 0.05) and decreases (Sol; P less than 0.05) in alpha(1). For alpha(2), only increases [red gastrocnemius (RG), Sol, and Dia; P less than 0.05] occurred. The beta(2)-isoform was decreased (LV, Sol, RG, and WG; P less than 0.05) in CHF, whereas the beta(1) was both increased (WG and Dia; P less than 0.05) and decreased (Sol and LV; P less than 0.05). For beta(3), decreases (P less than 0.05) in RG were observed in CHF, whereas no differences were found in Sol and WG between CHF and Con. It is concluded that CHF results in alterations in Na(+)-K(+)-ATPase that are muscle specific and property specific. Although decreases in Na(+)-K(+)-ATPase content would appear to explain the lower 3-O-MFPase in the LV, such does not appear to be the case in skeletal muscles where a dissociation between these properties was observed.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • «
  • <
  • 1
  • >
  • »