Millipore Sigma Vibrant Logo
 

SOD


1081 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (338)
  • (153)
  • (116)
  • (5)
  • (3)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Cu/Zn superoxide dismutase expression in the postnatal rat brain following an excitotoxic injury. 15929797

    BACKGROUND: In the nervous system, as in other organs, Cu/Zn superoxide dismutase (Cu/Zn SOD) is a key antioxidant enzyme involved in superoxide detoxification in normal cellular metabolism and after cell injury. Although it has been suggested that immature brain has a different susceptibility to oxidative damage than adult brain, the distribution and cell-specific expression of this enzyme in immature brain and after postnatal brain damage has not been documented. METHODS: In this study, we used immunohistochemistry and western blot to analyze the expression of Cu/Zn SOD in intact immature rat brain and in immature rat brain after an NMDA-induced excitotoxic cortical injury performed at postnatal day 9. Double immunofluorescence labelling was used to identify Cu/Zn SOD-expressing cell populations. RESULTS: In intact immature brain, Cu/Zn SOD enzyme was widely expressed at high levels in neurons mainly located in cortical layers II, III and V, in the sub-plate, in the pyriform cortex, in the hippocampus, and in the hypothalamus. Glial fibrillary acidic protein-positive cells only showed Cu/Zn SOD expression in the glia limitans and in scattered cells of the ventricle walls. No expression was detected in interfascicular oligodendroglia, microglia or endothelial cells. Following excitotoxic damage, neuronal Cu/Zn SOD was rapidly downregulated (over 2-4 hours) at the injection site before neurodegeneration signals and TUNEL staining were observed. Later, from 1 day post-lesion onward, an upregulation of Cu/Zn SOD was found due to increased expression in astroglia. A further increase was observed at 3, 5 and 7 days that corresponded to extensive induction of Cu/Zn SOD in highly reactive astrocytes and in the astroglial scar. CONCLUSION: We show here that, in the intact immature brain, the expression of Cu/Zn SOD was mainly found in neurons. When damage occurs, a strong and very rapid downregulation of this enzyme precedes neuronal degeneration, and is followed by an upregulation of Cu/Zn SOD in astroglial cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377
    Nombre del producto:
    Anti-NeuN Antibody, clone A60
  • Expression of superoxide dismutase in hyperglycemic focal cerebral ischemia in the rat. 15380626

    This study investigated the possibility that hyperglycemia induces early expression of various superoxide dismutases (SOD) and nitric oxide synthases (NOS) following focal cerebral ischemia in the rat. MnSOD, CuZnSOD, nNOS and eNOS mRNA and protein expression were examined 3 h after permanent middle cerebral artery occlusion under acute hyperglycemic or normoglycemic conditions. 2,3,5-triphenyltetrazolium chloride (TTC) treatment post-mortem revealed a significant area at risk of infarction following ischemia in hyperglycemic compared to normoglycemic rats. Although no changes in MnSOD, CuZnSOD, nNOS and eNOS mRNA expression were detected, Western blots of ischemic cortex revealed an increase in MnSOD and CuZnSOD protein expression in hyperglycemic compared to normoglycemic rats. Pre-treatment of hyperglycemic rats with the NOS inhibitors L-nitroarginine methyl ester (L-NAME) and 7-nitroindazole (7-NI) or dehydroascorbic acid (DHA), a superoxide scavenger, significantly reduced the TTC delineated zone. The hyperglycemia-induced post-transcriptional upregulation of MnSOD and CuZnSOD levels suggest a response to increased superoxide production which, in the presence of increased nitric oxide production, may play a major role in the increased risk of damage following hyperglycemic stroke.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Role of neural NO synthase (nNOS) uncoupling in the dysfunctional nitrergic vasorelaxation of penile arteries from insulin-resistant obese Zucker rats. 22540017

    Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes.Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations in arteries from LZR but not OZR. The NO donor SNAP induced decreases in intracellular calcium that were impaired in arteries from OZR compared to controls.The present study demonstrates nitrergic dysfunction and impaired neural NO signalling due to oxidative stress and nNOS uncoupling in penile arteries under conditions of insulin resistance. This dysfunction likely contributes to the metabolic syndrome-associated ED, along with the endothelial dysfunction also involving altered NO signalling.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5380
    Nombre del producto:
    Anti-Nitric Oxide Synthase I Antibody
  • Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. 15056289

    Reactive astrocytes frequently surround degenerating motor neurons in patients and transgenic animal models of amyotrophic lateral sclerosis (ALS). We report here that reactive astrocytes in the ventral spinal cord of transgenic ALS-mutant G93A superoxide dismutase (SOD) mice expressed nerve growth factor (NGF) in regions where degenerating motor neurons expressed p75 neurotrophin receptor (p75(NTR)) and were immunoreactive for nitrotyrosine. Cultured spinal cord astrocytes incubated with lipopolysaccharide (LPS) or peroxynitrite became reactive and accumulated NGF in the culture medium. Reactive astrocytes caused apoptosis of embryonic rat motor neurons plated on the top of the monolayer. Such motor neuron apoptosis could be prevented when either NGF or p75(NTR) was inhibited with blocking antibodies. In addition, nitric oxide synthase inhibitors were also protective. Exogenous NGF stimulated motor neuron apoptosis only in the presence of a low steady state concentration of nitric oxide. NGF induced apoptosis in motor neurons from p75(NTR +/+) mouse embryos but had no effect in p75(NTR -/-) knockout embryos. Culture media from reactive astrocytes as well as spinal cord lysates from symptomatic G93A SOD mice-stimulated motor neuron apoptosis, but only when incubated with exogenous nitric oxide. This effect was prevented by either NGF or p75(NTR) blocking-antibodies suggesting that it might be mediated by NGF and/or its precursor forms. Our findings show that NGF secreted by reactive astrocytes induce the death of p75-expressing motor neurons by a mechanism involving nitric oxide and peroxynitrite formation. Thus, reactive astrocytes might contribute to the progressive motor neuron degeneration characterizing ALS.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5260Z
    Nombre del producto:
    Anti-Nerve Growth Factor Antibody, clone 27/21, azide free
  • Increased production of superoxide anion contributes to dysfunction of the arteriovenous fistula. 22993073

    Vascular access dysfunction causes morbidity in hemodialysis patients. This study examined the generation and pathobiological significance of superoxide anion in a rat femoral arteriovenous fistula (AVF). One week after AVF creation, there was increased production of superoxide anion accompanied by decreased total superoxide dismutase (SOD) and Cu/Zn SOD activities and induction of the redox-sensitive gene heme oxygenase-1. Immunohistochemical studies of nitrotyrosine formation demonstrated that peroxynitrite, a product of superoxide anion and nitric oxide, was present in increased amounts in endothelial and smooth muscle cells in the AVF. Because uncoupled NOS isoforms generate superoxide anion, and NOS coupling requires tetrahydrobiopterin (BH(4)) as a cofactor, we assessed NOS uncoupling by determining the ratio of BH(4) to dihydrobiopterin (BH(2)); the BH(4)-to-BH(2) ratio was markedly attenuated in the AVF. Because Src is a vasculopathic signaling species upstream and downstream of superoxide anion, such expression was evaluated; expression of Src and phosphorylated Src was both markedly increased in the AVF. Expression of NADPH oxidase (NOX) 1, NOX2, NOX4, cyclooxygenase (COX) 1, COX2, p47(phox), and p67(phox) was all unchanged, as assessed by Western analyses, thereby suggesting that these proteins may not be involved in increased production of superoxide anion. Finally, administration of tempol, a superoxide anion scavenger, decreased neointima formation in the juxta-anastomotic venous segment and improved AVF blood flow. We conclude that the AVF exhibits increased superoxide anion generation that may reflect the combined effects of decreased scavenging by SOD and increased generation by uncoupled NOS, and that enhanced superoxide anion production promotes juxta-anastomotic stenosis and impairs AVF function.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-284
    Nombre del producto:
    Anti-Nitrotyrosine Antibody
  • Endurance training without weight loss lowers systemic, but not muscle, oxidative stress with no effect on inflammation in lean and obese women. 18502211

    Obesity is associated with oxidative stress. Endurance training (ET) in healthy individuals increases antioxidant enzyme activity and decreases oxidative stress, whereas its effects on oxidative status in obese humans have yet to be determined. We investigated the effects of obesity and ET on markers of oxidative stress, antioxidant defense, and inflammation. Obese (n=12) and lean (n=12) women underwent 12 weeks of ET with blood, 24-h urine, and muscle biopsies collected prior to and following training for determination of oxidative stress (urinary 8-hydroxy-2-deoxyguanosine and 8-isoprostanes, muscle protein carbonyls, and 4-hydroxynonenal), antioxidant enzyme protein content (muscle CuZnSOD, MnSOD, and catalase), and inflammation (C-reactive protein, leptin, adiponectin, interleukin-6). Obese women had elevated urinary 8-hydroxy-2-deoxyguanosine (P=0.03), muscle protein carbonyls (P=0.03), and 4-hydroxynonenal (P0.001); serum C-reactive protein (P=0.01); and plasma leptin (P=0.0001) and interleukin-6 (P=0.03). ET decreased urinary 8-hydroxy-2-deoxyguanosine (P=0.006) and 8-isoprostanes (P=0.02) in all subjects and CuZnSOD protein content (P=0.04) in obese women, in the absence of changes in body weight or composition. ET without weight loss decreases systemic oxidative stress, but not markers of inflammation, in obese women.
    Tipo de documento:
    Referencia
    Referencia del producto:
    S7150
    Nombre del producto:
    OxyBlot Protein Oxidation Detection Kit