Millipore Sigma Vibrant Logo
 

arginine


628 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (404)
  • (187)
  • (3)
  • (2)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Histone deimination as a response to inflammatory stimuli in neutrophils. 18209087

    Posttranslational modifications, such as the deimination of arginine to citrulline by peptidyl arginine deiminase (PAD4), change protein structure and function. For autoantigens, covalent modifications represent a mechanism to sidestep tolerance and stimulate autoimmunity. To examine conditions leading to histone deimination in neutrophils, we used Abs that detect citrullines in the N terminus of histone H3. Deimination was investigated in human neutrophils and HL-60 cells differentiated into granulocytes. We observed rapid and robust H3 deimination in HL-60 cells exposed to LPS, TNF, lipoteichoic acid, f-MLP, or hydrogen peroxide, which are stimuli that activate neutrophils. Importantly, we also observed H3 deimination in human neutrophils exposed to these stimuli. Citrullinated histones were identified as components of extracellular chromatin traps (NETs) produced by degranulating neutrophils. In contrast, apoptosis proceeded without detectable H3 deimination in HL-60 cells exposed to staurosporine or camptothecin. We conclude that histone deimination in neutrophils is induced in response to inflammatory stimuli and not by treatments that induce apoptosis. Our results further suggest that deiminated histone H3, a covalently modified form of a prominent nuclear autoantigen, is released to the extracellular space as part of the neutrophil response to infections. The possible association of a modified autoantigen with microbial components could, in predisposed individuals, increase the risk of autoimmunity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-191
  • PRMT1-mediated arginine methylation of PIAS1 regulates STAT1 signaling. 19136629

    To elucidate the function of the transcriptional coregulator PRMT1 (protein arginine methyltranferase 1) in interferon (IFN) signaling, we investigated the expression of STAT1 (signal transducer and activator of transcription) target genes in PRMT1-depleted cells. We show here that PRMT1 represses a subset of IFNgamma-inducible STAT1 target genes in a methyltransferase-dependent manner. These genes are also regulated by the STAT1 inhibitor PIAS1 (protein inhibitor of activated STAT1). PIAS1 is arginine methylated by PRMT1 in vitro as well as in vivo upon IFN treatment. Mutational and mass spectrometric analysis of PIAS1 identifies Arg 303 as the single methylation site. Using both methylation-deficient and methylation-mimicking mutants, we find that arginine methylation of PIAS1 is essential for the repressive function of PRMT1 in IFN-dependent transcription and for the recruitment of PIAS1 to STAT1 target gene promoters in the late phase of the IFN response. Methylation-dependent promoter recruitment of PIAS1 results in the release of STAT1 and coincides with the decline of STAT1-activated transcription. Accordingly, knockdown of PRMT1 or PIAS1 enhances the anti-proliferative effect of IFNgamma. Our findings identify PRMT1 as a novel and crucial negative regulator of STAT1 activation that controls PIAS1-mediated repression by arginine methylation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-404
    Nombre del producto:
    Anti-PRMT1 Antibody
  • Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cδ- and p38δ-dependent signaling and keratinocyte differentiation. 22199349

    PKCδ is a key regulator of keratinocyte differentiation that activates p38δ phosphorylation leading to increased differentiation as measured by an increased expression of the structural protein involucrin. Our previous studies suggest that p38δ exists in association with protein partners. A major goal is to identify these partners and understand their role in regulating keratinocyte differentiation. In this study we use affinity purification and mass spectrometry to identify protein arginine methyltransferase 5 (PRMT5) as part of the p38δ signaling complex. PRMT5 is an arginine methyltransferase that symmetrically dimethylates arginine residues on target proteins to alter target protein function. We show that PRMT5 knockdown is associated with increased p38δ phosphorylation, suggesting that PRMT5 impacts the p38δ signaling complex. At a functional level we show that PRMT5 inhibits the PKCδ- or 12-O-tetradecanoylphorbol-13-acetate-dependent increase in human involucrin expression, and PRMT5 dimethylates proteins in the p38δ complex. Moreover, PKCδ expression reduces the PRMT5 level, suggesting that PKCδ activates differentiation in part by reducing PRMT5 level. These studies indicate antagonism between the PKCδ and PRMT5 signaling in control of keratinocyte differentiation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-412
    Nombre del producto:
    Anti-dimethyl-Arginine Antibody, symmetric (SYM10)
  • Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. 12529443

    RNA binding proteins often contain multiple arginine glycine repeats, a sequence that is frequently methylated by protein arginine methyltransferases. The role of this posttranslational modification in the life cycle of RNA binding proteins is not well understood. Herein, we report that Sam68, a heteronuclear ribonucleoprotein K homology domain containing RNA binding protein, associates with and is methylated in vivo by the protein arginine N-methyltransferase 1 (PRMT1). Sam68 contains asymmetrical dimethylarginines near its proline motif P3 as assessed by using a novel asymmetrical dimethylarginine-specific antibody and mass spectrometry. Deletion of the methylation sites and the use of methylase inhibitors resulted in Sam68 accumulation in the cytoplasm. Sam68 was also detected in the cytoplasm of PRMT1-deficient embryonic stem cells. Although the cellular function of Sam68 is unknown, it has been shown to export unspliced human immunodeficiency virus RNAs. Cells treated with methylase inhibitors prevented the ability of Sam68 to export unspliced human immunodeficiency virus RNAs. Other K homology domain RNA binding proteins, including SLM-1, SLM-2, QKI-5, GRP33, and heteronuclear ribonucleoprotein K were also methylated in vivo. These findings demonstrate that RNA binding proteins are in vivo substrates for PRMT1, and their methylation is essential for their proper localization and function.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Expression of high levels of tubulin and microtubule-associated protein 2d in the neurohypophysial astrocytes of adult rat. 11955719

    The hypothalamo-neurohypophysial system, containing arginine vasopressin and oxytocin, is well known to show reversible morphological reorganization for both neurons and glial cells during chronic physiological stimulation. To determine the molecular background for these morphological changes, we investigated the expression of tubulin and microtubule-associated protein (MAP) 2d in the neurohypophysial astrocytes, pituicytes of adult rats by using reverse transcription-polymerase chain reaction, western blot, and immunohistochemistry. The mRNA of MAP2d was expressed at higher levels than that of MAP2c in the neurohypophysis, cerebral cortex, and cerebellum. In contrast, predominant expression of mRNA of MAP2c was detected in the olfactory bulb. Western blot analysis showed the presence of MAP2d in the neurohypophysis, however the amount was below the detection level in the cerebral cortex and cerebellum. A double labeling study using a confocal laser scanning microscope showed intense tubulin immunoreactivity in the glial fibrillary acidic protein (GFAP)-positive pituicytes of the intact neurohypophysis. Almost no tubulin immunoreactivity was observed in the astrocytes of the intact cerebral cortex, cerebellum, and supraoptic nucleus, in contrast to strong tubulin immunoreactivity in neuronal dendrites and somata. Interestingly, intense tubulin immunoreactivity was also observed in the GFAP-positive reactive astrocytes in the immediate vicinity of the artificial lesion of the cerebral cortex. Electron microscopic observation further demonstrated the presence of a lot of microtubules in the pituicytes of intact rats.The present results demonstrate that pituicytes in the adult rat neurohypophysis expresses high levels of tubulin and MAP2d compared with normal brain astrocytes, and suggest that the ability of astrocytic morphological alteration may be at least partly ascribed to this high expression of microtubule proteins.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB364
    Nombre del producto:
    Anti-MAP2A, 2B, 2C Antibody, clone HM-2
  • Human protein arginine methyltransferases in vivo--distinct properties of eight canonical members of the PRMT family. 19208762

    Methylation of arginine residues is a widespread post-translational modification of proteins catalyzed by a small family of protein arginine methyltransferases (PRMTs). Functionally, the modification appears to regulate protein functions and interactions that affect gene regulation, signalling and subcellular localization of proteins and nucleic acids. All members have been, to different degrees, characterized individually and their implication in cellular processes has been inferred from characterizing substrates and interactions. Here, we report the first comprehensive comparison of all eight canonical members of the human PRMT family with respect to subcellular localization and dynamics in living cells. We show that the individual family members differ significantly in their properties, as well as in their substrate specificities, suggesting that they fulfil distinctive, non-redundant functions in vivo. In addition, certain PRMTs display different subcellular localization in different cell types, implicating cell- and tissue-specific mechanisms for regulating PRMT functions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Potential role for peptidylarginine deiminase 2 (PAD2) in citrullination of canine mammary epithelial cell histones. 20668670

    Peptidylarginine Deiminases (PADs) convert arginine residues on substrate proteins to citrulline. Previous reports have documented that PAD2 expression and activity varies across the estrous cycle in the rodent uterus and pituitary gland, however, the expression and function of PAD2 in mammary tissue has not been previously reported. To gain more insight into potential reproductive roles for PAD2, in this study we evaluated PAD2 expression and localization throughout the estrous cycle in canine mammary tissue and then identified possible PAD2 enzymatic targets. Immunohistochemical and immunofluorescence analysis found PAD2 expression is low in anestrus, limited to a distinct, yet sparse, subset of epithelial cells within ductal alveoli during estrus/early diestrus, and encompasses the entire epithelium of the mammary duct in late diestrus. At the subcellular level, PAD2 is expressed in the cytoplasm, and to a lesser extent, the nucleus of these epithelial cells. Surprisingly, stimulation of canine mammary tumor cells (CMT25) shows that EGF, but not estrogen or progesterone, upregulates PAD2 transcription and translation suggesting EGF regulation of PAD2 and possibly citrullination in vivo. To identify potential PAD2 targets, anti-pan citrulline western blots were performed and results showed that citrullination activity is limited to diestrus with histones appearing to represent major enzymatic targets. Use of site-specific anti-citrullinated histone antibodies found that the N-terminus of histone H3, but not H4, appears to be the primary target of PAD activity in mammary epithelium. This observation supports the hypothesis that PAD2 may play a regulatory role in the expression of lactation related genes via histone citrullination during diestrus.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • PRMT3 is a distinct member of the protein arginine N-methyltransferase family. Conferral of substrate specificity by a zinc-finger domain. 10931850

    S-Adenosyl-l-methionine-dependent protein arginine N-methyltransferases (PRMTs) catalyze the methylation of arginine residues within a variety of proteins. At least four distinct mammalian family members have now been described, including PRMT1, PRMT3, CARM1/PRMT4, and JBP1/PRMT5. To more fully define the physiological role of PRMT3, we characterized its unique putative zinc-finger domain and how it can affect its enzymatic activity. Here we show that PRMT3 does contain a single zinc-finger domain in its amino terminus. Although the zinc-liganded form of this domain is not required for methylation of an artificial substrate such as the glutathione S-transferase-fibrillarin amino-terminal fusion protein (GST-GAR), it is required for the enzyme to recognize RNA-associated substrates in RAT1 cell extracts. The recombinant form of PRMT3 is inhibited by high concentrations of ZnCl(2) as well as N-ethylmaleimide, reagents that can modify cysteine sulfhydryl groups. We found that we could distinguish PRMT family members by their sensitivity to these reagents; JBP1/PRMT5 and Hsl7 methyltransferases were inhibited in a similar manner as PRMT3, whereas Rmt1, PRMT1, and CARM1/PRMT4 were not affected. We were also able to define differences in these enzymes by their sensitivity to inhibition by Tris and free arginine. Finally, we found that the treatment of RAT1 cell extracts with N-ethylmaleimide leads to a loss of the major PRMT1-associated activity that was immune to inhibition under the same conditions as a GST fusion protein. These results suggest that native forms of PRMTs can have different properties than their GST-catalytic chain fusion protein counterparts, which may lack associated noncatalytic subunits.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Protein Arginine Methyltransferase 6 (Prmt6) Is Essential for Early Zebrafish Development through the Direct Suppression of gadd45αa Stress Sensor Gene. 26487724

    Histone lysine methylation is important in early zebrafish development; however, the role of histone arginine methylation in this process remains unclear. H3R2me2a, generated by protein arginine methyltransferase 6 (Prmt6), is a repressive mark. To explore the role of Prmt6 and H3R2me2a during zebrafish embryogenesis, we identified the maternal characteristic of prmt6 and designed two prmt6-specific morpholino-oligos (MOs) to study its importance in early development, application of which led to early epiboly defects and significantly reduced the level of H3R2me2a marks. prmt6 mRNA could rescue the epiboly defects and the H3R2me2a reduction in the prmt6 morphants. Functionally, microarray data demonstrated that growth arrest and DNA damage-inducible, α, a (gadd45αa) was a significantly up-regulated gene in MO-treated embryos, the activity of which was linked to the activation of the p38/JNK pathway and apoptosis. Importantly, gadd45αa MO and p38/JNK inhibitors could partially rescue the defect of prmt6 morphants, the downstream targets of Prmt6, and the apoptosis ratios of the prmt6 morphants. Moreover, the results of ChIP quantitative real time PCR and luciferase reporter assay indicated that gadd45αa is a repressive target of Prmt6. Taken together, these results suggest that maternal Prmt6 is essential to early zebrafish development by directly repressing gadd45αa.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Vasopressin receptors. 11091117

    The biological effects of arginine vasopressin (AVP) are mediated by three receptor subtypes: the V1a and V1b receptors that activate phospholipases via Gq/11, and the V2 receptor that activates adenylyl cyclase by interacting with Gs. Isolation of the cDNAs encoding the V1a and V1b receptor subtypes explained the tissue variability of V1 antagonist binding, whereas identification of the cDNA and gene encoding the V2 receptor provided the information to identify the mutations responsible for X-linked nephrogenic diabetes insipidus. Mutations that abrogate the production and/or release of AVP from the pituitary have diabetes insipidus as their most dramatic manifestation, indicating that the maintenance of water homeostasis is the most important physiological role of this neuropeptide. Evidence for a significant role of AVP in blood pressure control, although actively sought, has been scant.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo