Millipore Sigma Vibrant Logo
 

cell+culture+systems


54 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (50)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Interleukin-1 participates in the classical and alternative activation of microglia/macrophages after spinal cord injury. 22483094

    Microglia and macrophages (MG/MΦ) have a diverse range of functions depending on unique cytokine stimuli, and contribute to neural cell death, repair, and remodeling during central nervous system diseases. While IL-1 has been shown to exacerbate inflammation, it has also been recognized to enhance neuroregeneration. We determined the activating phenotype of MG/MΦ and the impact of IL-1 in an in vivo spinal cord injury (SCI) model of IL-1 knock-out (KO) mice. Moreover, we demonstrated the contribution of IL-1 to both the classical and alternative activation of MG in vitro using an adult MG primary culture.SCI was induced by transection of the spinal cord between the T9 and T10 vertebra in wild-type and IL-1 KO mice. Locomotor activity was monitored and lesion size was determined for 14 days. TNFα and Ym1 levels were monitored to determine the MG/MΦ activating phenotype. Primary cultures of MG were produced from adult mice, and were exposed to IFNγ or IL-4 with and without IL-1β. Moreover, cultures were exposed to IL-4 and/or IL-13 in the presence and absence of IL-1β.The locomotor activity and lesion area of IL-1 KO mice improved significantly after SCI compared with wild-type mice. TNFα production was significantly suppressed in IL-1 KO mice. Also, Ym1, an alternative activating MG/MΦ marker, did not increase in IL-1 KO mice, suggesting that IL-1 contributes to both the classical and alternative activation of MG/MΦ. We treated primary MG cultures with IFNγ or IL-4 in the presence and absence of IL-1β. Increased nitric oxide and TNFα was present in the culture media and increased inducible NO synthase was detected in cell suspensions following co-treatment with IFNγ and IL-1β. Expression of the alternative activation markers Ym1 and arginase-1 was increased after exposure to IL-4 and further increased after co-treatment with IL-4 and IL-1β. The phenotype was not observed after exposure of cells to IL-13.We demonstrate here in in vivo experiments that IL-1 suppressed SCI in a process mediated by the reduction of inflammatory responses. Moreover, we suggest that IL-1 participates in both the classical and alternative activation of MG in in vivo and in vitro systems.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury. 20688809

    Devic's neuromyelitis optica is an inflammatory demyelinating disorder normally restricted to the optic nerves and spinal cord. Since the identification of a specific autoantibody directed against aquaporin 4, neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody, neuromyelitis optica has been considered an entity distinct from multiple sclerosis. Recent findings indicate that the neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody has a pathogenic role through complement-dependent astrocyte toxicity. However, the link with demyelination remains elusive. Autoantibodies can act as receptor agonists/antagonists or alter antigen density in their target cells. We hypothesized that the neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody impairs astrocytic function and secondarily leads to demyelination. Rat astrocytes and oligodendrocytes from primary cultures and rat optic nerves were exposed long-term (24 h) to immunoglobulin G in the absence of complement. Immunoglobulin G was purified from the serum of patients with neuromyelitis optica who were either neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody positive or negative, as well as from healthy controls. Flow cytometry analysis showed a reduction of membrane aquaporin 4 and glutamate transporter type 1 on astrocytes following contact with immunoglobulin G purified from neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody positive serum only. The activity of glutamine synthetase, an astrocyte enzyme converting glutamate into glutamine, decreased in parallel, indicating astrocyte dysfunction. Treatment also reduced oligodendrocytic cell processes and approximately 30% oligodendrocytes died. This deleterious effect was confirmed ex vivo; exposed optic nerves showed reduction of myelin basic protein. Immunoglobulin G from neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody seronegative patients and from healthy controls had no similar effect. Neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody did not directly injure oligodendrocytes cultured without astrocytes. A toxic bystander effect of astrocytes damaged by neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody on oligodendrocytes was identified. Progressive accumulation of glutamate in the culture medium of neuromyelitis optica-immunoglobulin G/aquaporin 4-antibody-treated glial cells supported the hypothesis of a glutamate-mediated excitotoxic death of oligodendrocytes in our models. Moreover, co-treatment of glial cultures with neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody and d+2-amino-5-phosphonopentanoic acid, a competitive antagonist at the N-methyl-d-aspartate/glutamate receptor, partially protected oligodendrocytes. Co-immunolabelling of oligodendrocyte markers and neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody showed that astrocytic positive processes were in close contact with oligodendrocytes and myelin in rat optic nerves and spinal cord, but far less so in other parts of the central nervous system. This suggests a bystander effect of neuromyelitis optica-immunoglobulin G-damaged astrocytes on oligodendrocytes in the nervous tissues affected by neuromyelitis optica. In conclusion, in these cell culture models we found a direct, complement-independent effect of neuromyelitis optica-immunoglobulin G/aquaporin 4 antibody on astrocytes, with secondary damage to oligodendrocytes possibly resulting from glutamate-mediated excitotoxicity. These mechanisms could add to the complement-induced damage, particularly the demyelination, seen in vivo.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. 26395878

    Rac1 is a critical regulator of cytoskeletal dynamics in multiple cell types. In the nervous system, it has been implicated in the control of cell proliferation, neuronal migration, and axon development.To systematically investigate the role of Rac1 in axon growth and guidance in the developing nervous system, we have examined the phenotypes associated with deleting Rac1 in the embryonic mouse forebrain, in cranial and spinal motor neurons, in cranial sensory and dorsal root ganglion neurons, and in the retina. We observe a widespread requirement for Rac1 in axon growth and guidance and a cell-autonomous defect in axon growth in Rac1 (-/-) motor neurons in culture. Neuronal death, presumably a secondary consequence of the axon growth and/or guidance defects, was observed in multiple locations. Following deletion of Rac1 in the forebrain, thalamocortical axons were misrouted inferiorly, with the majority projecting to the contralateral thalamus and a minority projecting ipsilaterally to the ventral cortex, a pattern of misrouting that is indistinguishable from the pattern previously observed in Frizzled3 (-/-) and Celsr3 (-/-) forebrains. In the limbs, motor-neuron-specific deletion of Rac1 produced a distinctive stalling of axons within the dorsal nerve of the hindlimb but a much milder loss of axons in the ventral hindlimb and forelimb nerves, a pattern that is virtually identical to the one previously observed in Frizzled3 (-/-) limbs.The similarities in axon growth and guidance phenotypes caused by Rac1, Frizzled3, and Celsr3 loss-of-function mutations suggest a mechanistic connection between tissue polarity/planar cell polarity signaling and Rac1-dependent cytoskeletal regulation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Manipulation of human pluripotent embryonal carcinoma stem cells and the development of neural subtypes. 12743319

    There are few reliable cell systems available to study the process of human neural development. Embryonal carcinoma (EC) cells are pluripotent stem cells derived from teratocarcinomas and offer a robust culture system to research cell differentiation in a manner pertinent to embryogenesis. Here, we describe the recent development of a series of culture procedures that together can be used to induce the differentiation of human EC stem cells, resulting in the formation of either pure populations of differentiated neurons, populations of differentiated astrocytes, or populations of immature neuronal cell types. Cell-type-specific markers were used to examine the induction of EC stem cell differentiation by retinoic acid. In direct response to manipulation of the culture environment, the expression of cell type markers correlated with the differentiation and appearance of distinct neural cell types, including neurons and astrocytes. These experiments demonstrate that cultured human EC stem cells provide a robust model cell system capable of reproducibly forming neural subtypes for research purposes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB324
    Nombre del producto:
    Anti-Neuron Specific Enolase Antibody, clone 5E2
  • Skeletal muscle tissue engineering: a maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus a ... 19625080

    The use of defined in vitro systems to study the developmental and physiological characteristics of a variety of cell types is increasing, due in large part to their ease of integration with tissue engineering, regenerative medicine, and high-throughput screening applications. In this study, myotubes derived from fetal rat hind limbs were induced to develop several aspects of mature muscle including: sarcomere assembly, development of the excitation-contraction coupling apparatus and myosin heavy chain (MHC) class switching. Utilizing immunocytochemical analysis, anisotropic and isotropic band formation (striations) within the myotubes was established, indicative of sarcomere formation. In addition, clusters of ryanodine receptors were colocalized with dihydropyridine complex proteins which signaled development of the excitation-contraction coupling apparatus and transverse tubule biogenesis. The myotubes also exhibited MHC class switching from embryonic to neonatal MHC. Lastly, the myotubes survived significantly longer in culture (70-90 days) than myotubes from our previously developed system (20-25 days). These results were achieved by modifying the culture timeline as well as the development of a new medium formulation. This defined model system for skeletal muscle maturation supports the goal of developing physiologically relevant muscle constructs for use in tissue engineering and regenerative medicine as well as for high-throughput screening applications.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB9078
    Nombre del producto:
    Anti-Ryanodine Receptor 1 Antibody
  • Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA receptor-dependent BDNF signaling. 20375082

    Lead (Pb(2+)) exposure is known to affect presynaptic neurotransmitter release in both in vivo and cell culture models. However, the precise mechanism by which Pb(2+) impairs neurotransmitter release remains unknown. In the current study, we show that Pb(2+) exposure during synaptogenesis in cultured hippocampal neurons produces the loss of synaptophysin (Syn) and synaptobrevin (Syb), two proteins involved in vesicular release. Pb(2+) exposure also increased the number of presynaptic contact sites. However, many of these putative presynaptic contact sites lack Soluble NSF attachment protein receptor complex proteins involved in vesicular exocytosis. Analysis of vesicular release using FM 1-43 dye confirmed that Pb(2+) exposure impaired vesicular release and reduced the number of fast-releasing sites. Because Pb(2+) is a potent N-methyl-D-aspartate receptor (NMDAR) antagonist, we tested the hypothesis that NMDAR inhibition may be producing the presynaptic effects. We show that NMDAR inhibition by aminophosphonovaleric acid mimics the presynaptic effects of Pb(2+) exposure. NMDAR activity has been linked to the signaling of the transsynaptic neurotrophin brain-derived neurotrophic factor (BDNF), and we observed that both the cellular expression of proBDNF and release of BDNF were decreased during the same period of Pb(2+) exposure. Furthermore, exogenous addition of BDNF rescued the presynaptic effects of Pb(2+). We suggest that the presynaptic deficits resulting from Pb(2+) exposure during synaptogenesis are mediated by disruption of NMDAR-dependent BDNF signaling.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Apoptosis-like cell death induction and aberrant fibroblast properties in human incisional hernia fascia. 21641387

    Incisional hernia often occurs following laparotomy and can be a source of serious problems. Although there is evidence that a biological cause may underlie its development, the mechanistic link between the local tissue microenvironment and tissue rupture is lacking. In this study, we used matched tissue-based and in vitro primary cell culture systems to examine the possible involvement of fascia fibroblasts in incisional hernia pathogenesis. Fascia biopsies were collected at surgery from incisional hernia patients and non-incisional hernia controls. Tissue samples were analyzed by histology and immunoblotting methods. Fascia primary fibroblast cultures were assessed at morphological, ultrastructural, and functional levels. We document tissue and fibroblast loss coupled to caspase-3 activation and induction of apoptosis-like cell-death mechanisms in incisional hernia fascia. Alterations in cytoskeleton organization and solubility were also observed. Incisional hernia fibroblasts showed a consistent phenotype throughout early passages in vitro, which was characterized by significantly enhanced cell proliferation and migration, reduced adhesion, and altered cytoskeleton properties, as compared to non-incisional hernia fibroblasts. Moreover, incisional hernia fibroblasts displayed morphological and ultrastructural alterations compatible with autophagic processes or lysosomal dysfunction, together with enhanced sensitivity to proapoptotic challenges. Overall, these data suggest an ongoing complex interplay of cell death induction, aberrant fibroblast function, and tissue loss in incisional hernia fascia, which may significantly contribute to altered matrix maintenance and tissue rupture in vivo.
    Tipo de documento:
    Referencia
    Referencia del producto:
    CBL171
    Nombre del producto:
    Anti-Actin Antibody, smooth muscle, clone ASM-1
  • Neurogenic neuroepithelial and radial glial cells generated from six human embryonic stem cell lines in serum-free suspension and adherent cultures. 17152062

    The great potential of human embryonic stem (hES) cells offers the opportunity both for studying basic developmental processes in vitro as well as for drug screening, modeling diseases, or future cell therapy. Defining protocols for the generation of human neural progenies represents a most important prerequisite. Here, we have used six hES cell lines to evaluate defined conditions for neural differentiation in suspension and adherent culture systems. Our protocol does not require fetal serum, feeder cells, or retinoic acid at any step, to induce neural fate decisions in hES cells. We monitored neurogenesis in differentiating cultures using morphological (including on-line follow up), immunocytochemical, and RT-PCR assays. For each hES cell line, in suspension or adherent culture, the same longitudinal progression of neural differentiation occurs. We showed the dynamic transitions from hES cells to neuroepithelial (NE) cells, to radial glial (RG) cells, and to neurons. Thus, 7 days after neural induction the majority of cells were NE, expressing nestin, Sox1, and Pax6. During neural proliferation and differentiation, NE cells transformed in RG cells, which acquired vimentin, BLBP, GLAST, and GFAP, proliferated and formed radial scaffolds. gamma-Aminobutyric acid (GABA)-positive and glutamate positive neurons, few oligodendrocyte progenitors and astrocytes were formed in our conditions and timing. Our system successfully generates human RG cells and could be an effective source for neuronal replacement, since RG cells predominantly generate neurons and provide them with support and guidance.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. 22287976

    The aim of the current study was to evaluate primary (human bronchial epithelial cells, HBEC) and non-primary (Calu-3, BEAS-2B, BEAS-2B R1) bronchial epithelial cell culture systems as air-liquid interface- (ALI-) differentiated models for asthma research. Ability to differentiate into goblet (MUC5AC+) and ciliated (β-Tubulin IV+) cells was evaluated by confocal imaging and qPCR. Expression of tight junction/adhesion proteins (ZO-1, E-Cadherin) and development of transepithelial electrical resistance (TEER) were assessed. Primary cells showed localised MUC5AC, β-Tubulin IV, ZO-1, and E-Cadherin and developed TEER with, however, a large degree of inter- and intradonor variation. Calu-3 cells developed a more reproducible TEER and a phenotype similar to primary cells although with diffuse β-Tubulin IV staining. BEAS-2B cells did not differentiate or develop tight junctions. These data highlight the challenges in working with primary cell models and the need for careful characterisation and selection of systems to answer specific research questions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3199Z
    Nombre del producto:
    Anti-E-Cadherin Antibody, clone 67A4, Azide Free
  • Endothelial cell responses towards low-fouling surfaces bearing rGD in a three-dimensional environment. 21679704

    This study reveals that it is possible to obtain a specific cell response towards low-fouling carboxymethyl dextran (CMD) surfaces bearing the RGD adhesive peptide in fibrin. To avoid cell sedimentation on surfaces observed in traditional cell culture systems, CMD surfaces bearing RGD were vertically embedded in fibrin containing human umbilical vein endothelial cells (HUVEC) and their effect over cells was investigated. Compared to the CMD surfaces and to CMD layers bearing the negative control RGE, RGD coatings promoted cell adhesion, induced focal contact formation indicated by co-localization of vinculin and actin fibers, and presented a significant effect over HUVEC net growth during the first 24h of the culture, as revealed by Ki67 staining and cell counting. The intracellular localization of caveolin-1 combined with the expression of beta 1 integrins was investigated and the orientation of HUVEC towards and on the RGD surfaces was studied. When compared to the negative controls, HUVEC responded to the RGD surface in fibrin resulting in acceleration of morphological changes. RGD surfaces supported fibrin degradation by HUVEC as revealed by fluorescent fibrin experiments as well as multi-cellular structure formation, vacuolation and lumen formation.Copyright © 2011 Elsevier Inc. All rights reserved.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB2910
    Nombre del producto:
    Anti-Mcl-1 Antibody