Millipore Sigma Vibrant Logo
 

d3


237 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (154)
  • (70)
  • (1)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Transrepression of the estrogen receptor promoter by calcitriol in human breast cancer cells via two negative vitamin D response elements. 23744764

    Calcitriol (1,25-dihydroxyvitamin D3), the hormonally active metabolite of vitamin D, exerts its anti-proliferative activity in breast cancer (BCa) cells by multiple mechanisms including the downregulation of the expression of estrogen receptor α (ER). We analyzed an ∼3.5 kb ER promoter sequence and demonstrated the presence of two potential negative vitamin D response elements (nVDREs), a newly identified putative nVDRE upstream at -2488 to -2473 bp (distal nVDRE) and a previously published sequence (proximal nVDRE) at -94 to -70 bp proximal to the P1 start site. Transactivation analysis using ER promoter deletion constructs and heterologous promoter-reporter constructs revealed that both nVDREs functioned to mediate calcitriol transrepression. In the electrophoretic mobility shift assay, the vitamin D receptor (VDR) showed strong binding to both nVDREs in the presence of calcitriol, and the chromatin immunoprecipitation assay demonstrated the recruitment of the VDR to the distal nVDRE site. Mutations in the 5' hexameric DNA sequence of the distal nVDRE resulted in the loss of calcitriol-mediated transrepression and the inhibition of protein-DNA complex formation, demonstrating the importance of these nucleotides in VDR DNA binding and transrepression. A putative nuclear factor-Y (NFY) binding site, identified within the distal nVDRE, led to the findings that NFY bound to the distal nVDRE site interfered with the binding of the VDR at the site and reduced calcitriol-mediated transrepression. In conclusion, the ER promoter region contains two negative VDREs that act in concert to bind to the VDR and both nVDREs are required for the maximal inhibition of ER expression by calcitriol. The suppression of ER expression and estrogen-mediated signaling by calcitriol in BCa cells suggests that vitamin D may be useful in the treatment of ER+ BCa.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Dietary Vitamin D3 Restriction Exacerbates Disease Pathophysiology in the Spinal Cord of the G93A Mouse Model of Amyotrophic Lateral Sclerosis. 26020962

    Dietary vitamin D3 (D3) restriction reduces paw grip endurance and motor performance in G93A mice, and increases inflammation and apoptosis in the quadríceps of females. ALS, a neuromuscular disease, causes progressive degeneration of motor neurons in the brain and spinal cord.We analyzed the spinal cords of G93A mice following dietary D3 restriction at 2.5% the adequate intake (AI) for oxidative damage (4-HNE, 3-NY), antioxidant enzymes (SOD2, catalase, GPx1), inflammation (TNF-α, IL-6, IL-10), apoptosis (bax/bcl-2 ratio, cleaved/pro-caspase 3 ratio), neurotrophic factor (GDNF) and neuron count (ChAT, SMI-36/SMI-32 ratio).Beginning at age 25 d, 42 G93A mice were provided food ad libitum with either adequate (AI;1 IU D3/g feed; 12 M, 11 F) or deficient (DEF; 0.025 IU D3/g feed; 10 M, 9 F) D3. At age 113 d, the spinal cords were analyzed for protein content. Differences were considered significant at P ≤ 0.10, since this was a pilot study.DEF mice had 16% higher 4-HNE (P = 0.056), 12% higher GPx1 (P = 0.057) and 23% higher Bax/Bcl2 ratio (P = 0.076) vs. AI. DEF females had 29% higher GPx1 (P = 0.001) and 22% higher IL-6 (P = 0.077) vs. AI females. DEF males had 23% higher 4-HNE (P = 0.066) and 18% lower SOD2 (P = 0.034) vs. AI males. DEF males had 27% lower SOD2 (P = 0.004), 17% lower GPx1 (P = 0.070), 29% lower IL-6 (P = 0.023) and 22% lower ChAT (P = 0.082) vs. DEF females.D3 deficiency exacerbates disease pathophysiology in the spinal cord of G93A mice, the exact mechanisms are sex-specific. This is in accord with our previous results in the quadriceps, as well as functional and disease outcomes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Molecular modelling of D2-like dopamine receptors. 1358063

    Three-dimensional computer models of the rat D2, D3 and D4 dopamine receptor subtypes have been constructed based on the diffraction co-ordinates for bacteriorhodopsin, another membrane-bound protein containing seven transmembrane domains presumed to be arranged in a similar spatial orientation. Models were assembled by aligning the putative transmembrane domains of the dopamine receptors with those of bacteriorhodopsin using sequence similarities, and then superimposing these modelled alpha-helices on to the bacteriorhodopsin-derived co-ordinates. These models explore the potential hydrogen bonding, electrostatic and stacking interactions within the receptor which may be important for maintaining the conformation of these receptors, and thereby provide target sites for agonist binding. Proposed interactions between the catecholamine ligands and these receptors appear to account for the affinity, although not the specificity, of these agonist ligands for the different dopamine receptor subtypes. Such models will be useful for establishing structure-function relationships between ligands and the dopamine receptors, and may ultimately provide a template for the design of receptor-specific drugs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion. 16129680

    Dopamine signaling is mediated by five cloned receptors, grouped into D1-like (D1 and D5) and D2-like (D2, D3 and D4) families. We identified by reverse transcription-PCR the presence of dopamine receptors from both families in INS-1E insulin-secreting cells as well as in rodent and human isolated islets. D2 receptor expression was confirmed by immunodetection revealing localization on insulin secretory granules of INS-1E and primary rodent and human beta cells. We then tested potential effects mediated by the identified receptors on beta cell function. Dopamine (10 microM) and the D2-like receptor agonist quinpirole (5 microM) inhibited glucose-stimulated insulin secretion tested in several models, i.e. INS-1E beta cells, fluorescence-activated cell-sorted primary rat beta cells, and pancreatic islets of rat, mouse, and human origin. Insulin exocytosis is controlled by metabolism coupled to cytosolic calcium changes. Measurements of glucose-induced mitochondrial hyperpolarization and ATP generation showed that dopamine and D2-like agonists did not inhibit glucose metabolism. On the other hand, dopamine decreased cell membrane depolarization as well as cytosolic calcium increases evoked by glucose stimulation in INS-1E beta cells. These results show for the first time that dopamine receptors are expressed in pancreatic beta cells. Dopamine inhibited glucose-stimulated insulin secretion, an effect that could be ascribed to D2-like receptors. Regarding the molecular mechanisms implicated in dopamine-mediated inhibition of insulin release, our results point to distal steps in metabolism-secretion coupling. Thus, the role played by dopamine in glucose homeostasis might involve dopamine receptors, expressed in pancreatic beta cells, modulating insulin release.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5084P
    Nombre del producto:
    Anti-Dopamine D2 Receptor Antibody
  • Cyclin D3 accumulation and activity integrate and rank the comitogenic pathways of thyrotropin and insulin in thyrocytes in primary culture. 10602491

    The proliferation of most normal cells depends on the synergistic interaction of several growth factors and hormones, but the cell cycle basis for this combined requirement remains largely uncharacterized. We have addressed the question of the requirement for insulin/IGF-1 also observed in many cell culture systems in the physiologically relevant system of primary cultures of dog thyroid epithelial cells stimulated by TSH, which exerts its mitogenic activity only via cAMP. The induction of cyclin A and cdc2, the phosphorylation of cdk2, the nuclear translocation of cdk4 and the assembly of cyclin D3-cdk4 complexes required the synergy of TSH and insulin. Cyclin D3 (the most abundant cyclin D) was necessary for the proliferation stimulated by TSH in the presence of insulin as shown by microinjection of a neutralizing antibody. Cyclin D3 accumulation and activity were differentially regulated by insulin and TSH, which points out this cyclin as an integrator that ranks these comitogenic pathways as supportive and activatory, respectively. Paradoxically TSH alone strongly repressed cyclin D3 accumulation. This inhibition was overridden by insulin, which markedly stimulated cyclin D3 mRNA and protein accumulation, but failed to assemble cyclin D3-cdk4 complexes in the absence of TSH. TSH unmasked the DCS-22 epitope of cyclin D3 and assembled cyclin D3-cdk4 in the presence of insulin. These data demonstrate that cyclin D synthesis and cyclin D-cdk assembly can be dissociated and complementarily regulated by different agents and signalling pathways.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. 16096642

    D cyclins (D1, D2 and D3) and their catalytic subunits (cyclin-dependent kinases cdk4 and cdk6) have a facilitating, but nonessential, role in cell cycle entry. Tissue-specific functions for D-type cyclins and cdks have been reported; however, the biochemical properties of these kinases are indistinguishable. We report that an F box protein, Fbxo7, interacted with cellular and viral D cyclins and distinguished among the cdks that bind D-type cyclins, specifically binding cdk6, in vitro and in vivo. Fbxo7 specifically regulated D cyclin/cdk6 complexes: Fbxo7 knockdown decreased cdk6 association with cyclin and its overexpression increased D cyclin/cdk6 activity and E2F activity. Fbxo7 interacted with p27, but its enhancement of cyclin D/cdk6 activity was p21/p27 independent. Fbxo7 overexpression transformed murine fibroblasts, rendering them tumorigenic in athymic nude mice. Transformed phenotypes were dependent on cdk6, as knockdown of cdk6 reversed them. Fbxo7 was highly expressed in epithelial tumors, but not in normal tissues, suggesting that it may have a proto-oncogenic role in human cancers.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ECM550
    Nombre del producto:
    QCM ECMatrix Cell Invasion Assay, 24-well (8 µm), colorimetric
  • Expansion of vitiligo lesions is associated with reduced epidermal CDw60 expression and increased expression of HLA-DR in perilesional skin. 14616364

    Detection of CDw60 in skin is representative of ganglioside D3 expression. This ganglioside is expressed primarily by melanocytes, and is of interest as a membrane antigen targeted by immunotherapy for melanoma patients. Expression of CDw60 by keratinocytes is defined by the presence of T-helper cell (Th)1 vs. Th2 cytokines, and can serve as a sentinel molecule to characterize an ongoing skin immune response.These immunobiological characteristics have provided the incentive to study the expression of CDw60 in the context of progressive vitiligo.Frozen sections were obtained from control skin and from vitiligo lesions and immunostained to show CDw60. Cells were cultured, their CDw60 expression studied and ribonuclease protection assays run to detect cytokine mRNA.Resistance to cytokine-mediated regulation of CDw60 expression was demonstrated in vitro by melanocytes, which appeared capable of generating autocrine and paracrine regulatory molecules supporting CDw60 expression. Induction of CDw60 expression was inhibited by antibodies to interleukin (IL)-4, suggesting that this cytokine was responsible, at least in part, for melanocyte-induced CDw60 expression. Marginal skin from patients with progressive generalized vitiligo consistently showed a reduction in epidermal CDw60 expression alongside elevated human leucocyte associated antigen (HLA)-DR expression at the margin. It thus appears that inflammatory infiltrates present in marginal skin generate type 1 rather than type 2 cytokines, supportive of a cell-mediated autoimmune response.These results support an active role of melanocytes within the skin immune system, and associate their loss in generalized vitiligo with a cell-mediated immune response mediated by type 1 cytokines.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MABF978
    Nombre del producto:
    Anti-GD3, 9-O-acetyl Antibody, clone UM4D4
  • Vitamin D-binding protein controls T cell responses to vitamin D. 25230725

    In vitro studies have shown that the active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), can regulate differentiation of CD4+ T cells by inhibiting Th1 and Th17 cell differentiation and promoting Th2 and Treg cell differentiation. However, the serum concentration of 1,25(OH)2D3 is far below the effective concentration of 1,25(OH)2D3 found in in vitro studies, and it has been suggested that 1,25(OH)2D3 must be produced locally from the inactive precursor 25-hydroxyvitamin D3 (25(OH)D3) to affect ongoing immune responses in vivo. Although it has been reported that activated T cells express the 25(OH)D-1α-hydroxylase CYP27B1 that converts 25(OH)D3 to 1,25(OH)2D3, it is still controversial whether activated T cells have the capacity to produce sufficient amounts of 1,25(OH)2D3 to affect vitamin D-responsive genes. Furthermore, it is not known how the vitamin D-binding protein (DBP) found in high concentrations in serum affects T cell responses to 25(OH)D3.We found that activated T cells express CYP27B1 and have the capacity to produce sufficient 1,25(OH)2D3 to affect vitamin D-responsive genes when cultured with physiological concentrations of 25(OH)D3 in serum-free medium. However, if the medium was supplemented with serum or purified DBP, DBP strictly inhibited the production of 1,25(OH)2D3 and 25(OH)D3-induced T cell responses. In contrast, DBP did not inhibit the effect of exogenous 1,25(OH)2D3. Actin, arachidonic acid and albumin did not affect the sequestration of 25(OH)D3 by DBP, whereas carbonylation of DBP did.Activated T cells express CYP27B1 and can convert 25(OH)D3 to 1,25(OH)2D3 in sufficiently high concentrations to affect vitamin D-responsive genes when cultured in serum-free medium. However, DBP sequesters 25(OH)D3 and inhibits the production of 1,25(OH)2D3 in T cells. To fully exploit the immune-regulatory potential of vitamin D, future studies of the mechanisms that enable the immune system to exploit 25(OH)D3 and convert it to 1,25(OH)2D3 in vivo are required.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-163
    Nombre del producto:
    Anti-PLCγ-1 Antibody
  • Pramipexole has astrocyte-mediated neuroprotective effects against lactacystin toxicity. 18555604

    Pramipexole, a dopamine D2/D3 receptor agonist used in the treatment of Parkinson's disease, has been reported to have neuroprotective potential. We investigated the effect of pramipexole against cell death induced by a proteasome inhibitor, lactacystin, using primary mecencephalic neuronal cultures and SH-SY5Y cells. In E14 rat primary mesencephalic cultures, the number of surviving tyrosine hydroxylase (TH)-positive neurons and microtubule associated protein 2 (MAP2)-positive neurons was decreased by exposure to 1-5 microM lactacystin in a dose-dependent manner. Pretreatment with 100 microM pramipexole rescued TH-positive neurons and MAP2-positive neurons from the toxicity of lactacystin. The protective effect of pramipexole was not selective for TH-positive dopaminergic neurons. However, the treatment with 100 microM pramipexole did not protect SH-SY5Y cells against lactacystin-induced cell toxicity and proteasome dysfunction. We hypothesized that the protective effect of pramipexole against the lactacystin-toxicity was not direct but a secondary effect mediated by astrocytes. Therefore, we investigated the efficacy of conditioned medium collected from mecencephalic astrocytes treated with pramipexole. The conditioned medium increased the viability of SH-SY5Y cells against the toxicity of lactacystin. Pramipexole increased the levels of brain derived neurotrophic factor (BDNF) in the conditioned medium of astrocyte cultures. These protective effects were not significantly inhibited by dopamine D2 or D3 receptor antagonists. We demonstrated that pramipexole had the protective effect against lactacystin toxicity, mediated by a neurotrophic effect of astrocyte-produced factors including BDNF.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB318
    Nombre del producto:
    Anti-Tyrosine Hydroxylase Antibody, clone LNC1
  • Cyclin D3: requirement for G1/S transition and high abundance in quiescent tissues suggest a dual role in proliferation and differentiation. 9747882

    The mammalian D-type cyclins D1, D2, and D3 activate the cyclin-dependent kinases CDK4 and CDK6 in G1 and thereby promote the cell's commitment to enter S phase. To elucidate the extent of functional overlap among the D-type cyclins, we have examined several aspects of the least characterized member of this subfamily of G cyclin proteins, cyclin D3. Microinjection of cyclin D3-neutralizing antibody inhibited G1/S transition in human (IMR-90) and rat (R12) diploid fibroblasts, indicating that analogous to cyclins D1 and D2, cyclin D3 is essential for timely progression through G1. In contrast to cyclins D1 and D2, cyclin D3 was (i) ubiquitously expressed among a panel of 70 human cultured cell types; (ii) strongly upregulated upon induction of HL-60 leukaemia cells to differentiate; and (iii) accumulated to high levels in a wide range of quiescent cell types in mouse and human differentiated tissues. Complementary analyses of human biopsies and mouse tissues at different stages of foetal and postnatal development revealed lineage-dependent transient or long-term accumulation of the cyclin D3 protein, correlating with initiation/establishment or maintenance of the mature phenotypes, respectively. Our data support the notion that the biological roles of the individual D-type cyclins are not fully redundant, and suggest a possible dual role for cyclin D3 in cell proliferation and induction and/or maintenance of terminal differentiation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo