Millipore Sigma Vibrant Logo
 

insulin+antibody


279 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (235)
  • (35)
  • (3)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Corticosterone inhibits the lipid-mobilizing effects of oleoyl-estrone in adrenalectomized rats. 17510239

    Oleoyl-estrone (OE) is an adipose-derived signal that decreases energy intake and body lipid, maintaining energy expenditure and glycemic homeostasis. Glucocorticoids protect body lipid and the metabolic status quo. We studied the combined effects of OE and corticosterone in adrenalectomized female rats: daily OE gavages (0 or 10 nmol/g) and slow-release corticosterone pellets at four doses (0, 0.5, 1.7, and 4.8 mg/d). Intact and sham-operated controls were also included. After 8 d, body composition and plasma metabolites and hormones were measured. OE induced a massive lipid mobilization (in parallel with decreased food intake and maintained energy expenditure). Corticosterone increased fat deposition and inhibited the OE-elicited mobilization of body energy, even at the lowest dose. OE enhanced the corticosterone-induced rise in plasma triacylglycerols, and corticosterone blocked the OE-induced decrease in leptin. High corticosterone and OE increased insulin resistance beyond the effects of corticosterone alone. The presence of corticosterone dramatically affected OE effects, reversing its decrease of body energy (lipid) content, with little or no change on food intake or energy expenditure. The maintenance of glycemia and increasing insulin in parallel to the dose of corticosterone indicate a decrease in insulin sensitivity, which is enhanced by OE. The reversal of OE effects on lipid handling, insulin resistance, can be the consequence of a corticosterone-induced OE resistance. Nevertheless, OE effects on cholesterol were largely unaffected. In conclusion, corticosterone administration effectively blocked OE effects on body lipid and energy balance as well as insulin sensitivity and glycemia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1297
    Nombre del producto:
    Anti-Corticosterone Antibody
  • Erythropoietin administration acutely stimulates resting energy expenditure in healthy young men. 22241056

    Treatment with recombinant human erythropoietin (rHuEpo) improves insulin sensitivity in patients with end-stage renal disease, and animal studies indicate that Epo increases fat oxidation. However, the metabolic effects of rHuEpo have never been experimentally studied in healthy humans. The aim was to investigate the effects of an acute rHuEpo bolus on substrate metabolism and insulin sensitivity in healthy young men. Ten healthy young men were studied in a single-blinded, randomized crossover design with a 2-wk washout period receiving 400 IU/kg rHuEpo or placebo. Substrate metabolism was evaluated by indirect calorimetry and tracer infusions, and insulin sensitivity by a hyperinsulinemic euglycemic clamp; and PCR and Western blotting measured protein expression and content, respectively. Resting energy expenditure (REE) increased significantly after rHuEpo [basal: 1,863.3 ± 67.2 (kcal/day) (placebo) vs. 2,041.6 ± 81.2 (rHuEpo), P less than 0.001; clamp: 1,903.9 ± 68.3 (placebo) vs. 2,015.7 ± 114.4 (rHuEpo), P = 0.03], but the increase could not be explained by changes in mRNA levels of uncoupling protein 2 or 3. Fat oxidation in the basal state tended to be higher after rHuEpo but could not be explained by changes in mRNA levels of CPT1 and PPARα or AMPK and ACC protein phosphorylation. Insulin-stimulated glucose disposal, glucose metabolism, and whole body and forearm protein metabolism did not change significantly in response to rHuEpo. In conclusion, a single injection of rHuEpo acutely increases REE in healthy human subjects. This calorigenic effect is not accompanied by distinct alterations in the pattern of substrate metabolism or insulin sensitivity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Action of metformin on the insulin-signaling pathway and on glucose transport in human granulosa cells. 21209036

    Hyperinsulinemia in polycystic ovary syndrome is widely treated with the insulin sensitizer metformin, which, in addition to its systemic effects, directly affects the ovarian insulin-stimulated steroidogenesis pathway.Our aim was to investigate the interaction of metformin with the other insulin-stimulated ovarian pathway, namely that leading to glucose uptake.Human granulosa-luteal cells were cultured with metformin (10(-7) M), insulin (10 ng/ml) or metformin and insulin (met + ins) combined. Insulin receptor (IR) involvement was assessed by culture with an (anti)-insulin receptor (IR) antibody.The effect of metformin on insulin-receptor substrate proteins 1 and 2 (IRS-1 and -2) mRNA and protein expression was determined. The KGN granulosa-cell line was used to investigate the effect of insulin and metformin on Akt activation and glucose transporter-4 (Glut-4) expression. Glut-4 translocation from the cytosol to the membrane was determined in cytoplasmic and membrane-enriched fractions of protein lysates.IRS-1 mRNA and protein increased with all treatments. In contrast, basal IRS-2 mRNA levels were barely detectable, but transcription was up-regulated by metformin. The anti-IR antibody reduced treatment-stimulated IRS-1 to basal levels and IRS-2 expression to an even greater extent than IRS-1, showing greater dependence on the IR than IRS-1. Metformin in the presence of insulin activated Akt and this was dependent on phosphoinositide-3 kinase, as was translocation of Glut-4 to the membrane. Metformin was able to substantially enhance the insulin-stimulated translocation of Glut-4 transporters from the cytosol to the membrane.This net increase in Glut-4 transporters in the plasma membrane has the potential to increase glucose uptake and metabolism by granulosa cells of the insulin-resistant polycystic ovary, thereby facilitating follicle growth.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1137
  • Ghrelin vaccination decreases plasma MCP-1 level in LDLR(-/-)-mice. 19751783

    Ghrelin is a novel peptide hormone having growth hormone releasing activity and many endocrine and metabolic functions. In rats and pigs, ghrelin immunizations have recently been shown to induce an antibody response against ghrelin simultaneously with a decrease in body weight gain. Our aim was to test the role of ghrelin immunization on atherosclerosis and weight gain in mice. LDLR(-/-)-mice (n=36) were immunized with ghrelin-PADRE, PADRE alone and PBS and then placed on a high fat diet for 22 weeks. Weight gain and food intake were followed throughout the study. Acylated and total ghrelin, cytokines and MCP-1 were analyzed from plasma using commercial kits. Stomach ghrelin was assessed using qRT-PCR and immunohistochemistry. Atherosclerosis was determined from aorta and cross-sections at the end of study. Mice immunized with ghrelin-PADRE developed high plasma IgG titers to ghrelin simultaneously with a significant increase in plasma acylated and total ghrelin levels. Plasma MCP-1 levels decreased in mice immunized with ghrelin-PADRE compared to mice immunized with PADRE and PBS. There were no differences in atherosclerosis determined from aorta and cross-sections as well as in body weights and food intake in LDLR(-/-)-mice between the different immunization groups. Our data indicates that ghrelin-PADRE vaccination induces a strong exclusive IgG response to ghrelin and increases plasma acylated and total ghrelin levels in mice. Ghrelin vaccination decreases plasma MCP-1 levels even though no effects on developing signs of atherosclerosis or weight gain in mice were observed.
    Tipo de documento:
    Referencia
    Referencia del producto:
    EZRMI-13K
    Nombre del producto:
    Rat/Mouse Insulin ELISA
  • Expression of peroxisome proliferator-activated receptor-gamma in key neuronal subsets regulating glucose metabolism and energy homeostasis. 18845632

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-gamma agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARgamma is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARgamma distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spanning the hypothalamus, the ventral tegmental area, and the nucleus tractus solitarius. In several brain areas, nuclear PPARgamma immunoreactivity was detected in cells that costained for neuronal nuclei, a neuronal marker. In the hypothalamus, PPARgamma immunoreactivity was observed in a majority of neurons in the arcuate (including both agouti related protein and alpha-MSH containing cells) and ventromedial hypothalamic nuclei and was also present in the hypothalamic paraventricular nucleus, the lateral hypothalamic area, and tyrosine hydroxylase-containing neurons in the ventral tegmental area but was not expressed in the nucleus tractus solitarius. To validate and extend these histochemical findings, we generated mice with neuron-specific PPARgamma deletion using nestin cre-LoxP technology. Compared with littermate controls, neuron-specific PPARgamma knockout mice exhibited dramatic reductions of both hypothalamic PPARgamma mRNA levels and PPARgamma immunoreactivity but showed no differences in food intake or body weight over a 4-wk study period. We conclude that: 1) PPARgamma mRNA and protein are expressed in the hypothalamus, 2) neurons are the predominant source of PPARgamma in the central nervous system, although it is likely expressed by nonneuronal cell types as well, and 3) arcuate nucleus neurons that control energy homeostasis and glucose metabolism are among those in which PPARgamma is expressed.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-466
    Nombre del producto:
  • Chronic intermittent hypoxia sensitizes acute hypothalamic-pituitary-adrenal stress reactivity and Fos induction in the rat locus coeruleus in response to subsequent immo ... 18554809

    Obstructive sleep apnea (OSA) is associated with several pathophysiological conditions, including hypertension, obesity, insulin resistance, hypothalamic-pituitary-adrenal (HPA) dysregulation, and other endocrine and metabolic disturbances comprising the "metabolic syndrome." Repeated episodes of hypoxia in OSA may represent a chronic intermittent stress, leading to HPA dysregulation. Alterations in HPA reactivity could then contribute to or exacerbate other pathophysiological processes. We showed previously that another metabolic stressor, chronic intermittent cold stress, enhanced noradrenergic facilitation of acute HPA stress reactivity. In this study, we investigated whether chronic intermittent hypoxia (CIH), a rat model for the arterial hypoxemia that accompanies OSA, similarly sensitizes the HPA response to novel acute stress. Rats were exposed to CIH (alternating cycles of normoxia [3 min at 21% O(2)] and hypoxia [3 min at 10% O(2)], repeated continuously for 8 h/day during the light portion of the cycle for 7 days). On the day after the final CIH exposure, there were no differences in baseline plasma adrenocorticotropic hormone (ACTH), but the peak ACTH response to 30 min acute immobilization stress was greater in CIH-stressed rats than in controls. Induction of Fos expression by acute immobilization stress was comparable following CIH in several HPA-modulatory brain regions, including the paraventricular nucleus, bed nucleus of the stria terminalis, and amygdala. Fos induction was attenuated in lateral hypothalamus, an HPA-inhibitory region. By contrast, acute Fos induction was enhanced in noradrenergic neurons in the locus coeruleus following CIH exposure. Thus, similar to chronic cold stress, CIH sensitized acute HPA and noradrenergic stress reactivity. Plasticity in the acute stress response is important for long-term adaptation, but may also contribute to pathophysiological conditions associated with states of chronic or repeated stress, such as OSA. Determining the neural mechanisms underlying these adaptations may help us better understand the etiology of such disorders, and inform the development of more effective treatments.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB308
    Nombre del producto:
    Anti-Dopamine β Hydroxylase Antibody, clone 4F10.2
  • Defects of insulin and IGF-1 action at receptor and postreceptor level in a patient with type A syndrome of insulin resistance. 9175764

    The action of insulin and IGF-1 in comparison to non-diabetic controls was studied in cultured fibroblasts of a patient with an inherited syndrome of insulin resistance (Type A syndrome). Insulin binding was reduced due to decreased receptor affinity, but sequence analyses revealed no alterations of splicing or primary insulin receptor (IR) structure. Most likely due to the IR affinity defect analyses of signal transduction pathways showed an impairment of insulin action on glucose uptake, total RNA synthesis and phosphorylation as well as activity of MAP-kinase. In addition inducibility of c-fos mRNA level was strongly impaired by insulin and IGF-1, but comparable to controls by PDGF indicating a postreceptor defect. In conclusion, we provide evidence that genetic syndromes of insulin resistance can be associated with both, receptor and postreceptor defects.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-182
  • Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways. 21161439

    Obesity with excessive levels of circulating free fatty acids (FFAs) is tightly linked to the incidence of type 2 diabetes. Insulin resistance of peripheral tissues and pancreatic β-cell dysfunction are two major pathological changes in diabetes and both are facilitated by excessive levels of FFAs and/or glucose. To gain insight into the mitochondrial-mediated mechanisms by which long-term exposure of INS-1 cells to excess FFAs causes β-cell dysfunction, the effects of the unsaturated FFA linoleic acid (C 18:2, n-6) on rat insulinoma INS-1 β cells was investigated. INS-1 cells were incubated with 0, 50, 250 or 500 μM linoleic acid/0.5% (w/v) BSA for 48 h under culture conditions of normal (11.1 mM) or high (25 mM) glucose in serum-free RPMI-1640 medium. Cell viability, apoptosis, glucose-stimulated insulin secretion, Bcl-2, and Bax gene expression levels, mitochondrial membrane potential and cytochrome c release were examined. Linoleic acid 500 μM significantly suppressed cell viability and induced apoptosis when administered in 11.1 and 25 mM glucose culture medium. Compared with control, linoleic acid 500 μM significantly increased Bax expression in 25 mM glucose culture medium but not in 11.1 mM glucose culture medium. Linoleic acid also dose-dependently reduced mitochondrial membrane potential (ΔΨm) and significantly promoted cytochrome c release from mitochondria in both 11.1 mM glucose and 25 mM glucose culture medium, further reducing glucose-stimulated insulin secretion, which is dependent on normal mitochondrial function. With the increase in glucose levels in culture medium, INS-1 β-cell insulin secretion function was deteriorated further. The results of this study indicate that chronic exposure to linoleic acid-induced β-cell dysfunction and apoptosis, which involved a mitochondrial-mediated signal pathway, and increased glucose levels enhanced linoleic acid-induced β-cell dysfunction.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1800
  • Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in {beta}-cells. 15618358

    Islet amyloid polypeptide (IAPP; amylin) is a peptide hormone that is cosecreted with insulin from beta-cells. Impaired processing of proIAPP, the IAPP precursor, has been implicated in islet amyloid formation in type 2 diabetes. We previously showed that proIAPP is processed to IAPP by the prohormone convertases PC1/3 and PC2 at its carboxyl (COOH) and amino (NH(2)) termini, respectively. In this study, we investigated the role of carboxypeptidase E (CPE) in the processing of proIAPP using mice lacking active CPE (Cpe(fat)/Cpe(fat)) and NIT-2 cells, a beta-cell line derived from their islets. Western blot analysis demonstrated that an approximately 6-kDa NH(2)-terminally unprocessed form of proIAPP was elevated approximately 86% in islets from Cpe(fat)/Cpe(fat) mice, compared with wild type. This increase was independent of the development of hyperglycemia (8 wk male) or obesity (18 wk female). Impaired proIAPP processing was associated with a decrease in PC2 (but not PC1/3) and both the 21- and 27-kDa forms of the PC2 chaperone protein 7B2, suggesting that PC2-mediated processing of proIAPP at its NH(2) terminus was impaired in the absence of CPE. Formation of COOH-terminally amidated (pro)IAPP was reduced approximately 75% in NIT-2, compared with NIT-1 beta-cells, supporting a direct role for CPE in maturation of IAPP by removal of its COOH-terminal dibasic residues, the step essential for IAPP amidation. We conclude that lack of CPE in islet beta-cells results in a marked decrease in processing of proIAPP at its NH(2) (but not COOH) terminus that is associated with attenuated levels of PC2 and (pro)7B2 and a great reduction in formation of mature amidated IAPP.
    Tipo de documento:
    Referencia
    Referencia del producto:
    EZHA-52K
    Nombre del producto:
    Human Amylin ELISA
  • Skeletal muscle mitochondrial capacity and insulin resistance in type 2 diabetes. 21307136

    The objective of this study was to determine the role of maximum mitochondrial capacity on the variation in insulin sensitivity within a population of patients with type 2 diabetes mellitus (T2DM).Fifty-eight participants enrolled in a cross-sectional design: eight active controls [maximum aerobic capacity (VO(2max)) greater than 40 ml/kg · min], 17 healthy sedentary controls without a family history (FH-) and seven with a family history (FH+) of diabetes, four obese participants, and 21 patients with T2DM. Mitochondrial capacity was measured noninvasively using (31)P magnetic resonance spectroscopy of the vastus lateralis. Maximal ATP synthetic rate (ATP(max)) was determined from the rate of phosphocreatine (PCr) recovery after short-term isometric exercise.ATP(max) was lower (P less than 0.001) in T2DM and higher (P less than 0.001) in active as compared with healthy sedentary FH- (active, 1.01 ± 0.2; FH-, 0.7 ± 0.2; FH+, 0.6 ± 0.1; obese, 0.6 ± 0.1; T2DM, 0.5 ± 0.2 mm ATP/sec; ANOVA P less than 0.0001). Insulin sensitivity, measured by euglycemic-hyperinsulinemic (80 mIU/m(2) · min) clamp was also reduced in T2DM (P less than 0.001) (active, 12.0 ± 3.2; FH-, 7.8 ± 2.2; FH+, 6.8 ± 3.5; obese, 3.1 ± 1.0; T2DM, 3.4 ± 1.6; mg/kg estimated metabolic body size · min; ANOVA P less than 0.0001). Unexpectedly, there was a broad range of ATP(max) within the T2DM population where 52% of subjects with T2DM had ATP(max) values that were within the range observed in healthy sedentary controls. In addition, 24% of the T2DM subjects overlapped with the active control group (range, 0.65-1.27 mm ATP/sec). In contrast to the positive correlation between ATP(max) and M-value in the whole population (r(2) = 0.35; P less than 0.0001), there was no correlation between ATP(max) and M-value in the patients with T2DM (r(2) = 0.004; P = 0.79).Mitochondrial capacity is not associated with insulin action in T2DM.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1628
    Nombre del producto:
    Anti-Myosin Antibody, slow muscle, clone NOQ7.5.4D