Millipore Sigma Vibrant Logo
 

prostaglandin


176 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (149)
  • (20)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Prostanoid receptors: structures, properties, and functions. 10508233

    Prostanoids are the cyclooxygenase metabolites of arachidonic acid and include prostaglandin (PG) D(2), PGE(2), PGF(2alpha), PGI(2), and thromboxne A(2). They are synthesized and released upon cell stimulation and act on cells in the vicinity of their synthesis to exert their actions. Receptors mediating the actions of prostanoids were recently identified and cloned. They are G protein-coupled receptors with seven transmembrane domains. There are eight types and subtypes of prostanoid receptors that are encoded by different genes but as a whole constitute a subfamily in the superfamily of the rhodopsin-type receptors. Each of the receptors was expressed in cultured cells, and its ligand-binding properties and signal transduction pathways were characterized. Moreover, domains and amino acid residues conferring the specificities of ligand binding and signal transduction are being clarified. Information also is accumulating as to the distribution of these receptors in the body. It is also becoming clear for some types of receptors how expression of their genes is regulated. Furthermore, the gene for each of the eight types of prostanoid receptor has been disrupted, and mice deficient in each type of receptor are being examined to identify and assess the roles played by each receptor under various physiological and pathophysiological conditions. In this article, we summarize these findings and attempt to give an overview of the current status of research on the prostanoid receptors.
    Tipo de documento:
    Referencia
    Referencia del producto:
    HTS131C
  • Expression and cellular localization of cyclooxygenases and prostaglandin E synthases in the hemorrhagic brain. 21385433

    Although cyclooxygenases (COX) and prostaglandin E synthases (PGES) have been implicated in ischemic stroke injury, little is known about their role in intracerebral hemorrhage (ICH)-induced brain damage. This study examines the expression and cellular localization of COX-1, COX-2, microsomal PGES-1 (mPGES-1), mPGES-2, and cytosolic PGES (cPGES) in mice that have undergone hemorrhagic brain injury.ICH was induced in C57BL/6 mice by intrastriatal injection of collagenase. Expression and cellular localization of COX-1, COX-2, mPGES-1, mPGES-2, and cPGES were examined by immunofluorescence staining.In the hemorrhagic brain, COX-1, mPGES-2, and cPGES were expressed constitutively in neurons; COX-1 was also constitutively expressed in microglia. The immunoreactivity of COX-2 was increased in neurons and astrocytes surrounding blood vessels at 5 h and then tended to decrease in neurons and increase in astrocytes at 1 day. At 3 days after ICH, COX-2 was observed primarily in astrocytes but was absent in neurons. Interestingly, the immunoreactivity of mPGES-1 was increased in neurons in the ipsilateral cortex and astrocytes in the ipsilateral striatum at 1 day post-ICH; the immunoreactivity of astrocytic mPGES-1 further increased at 3 days.Our data suggest that microglial COX-1, neuronal COX-2, and astrocytic COX-2 and mPGES-1 may work sequentially to affect ICH outcomes. These findings have implications for efforts to develop anti-inflammatory strategies that target COX/PGES pathways to reduce ICH-induced secondary brain damage.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377
    Nombre del producto:
    Anti-NeuN Antibody, clone A60
  • Failure of parturition in mice lacking the prostaglandin F receptor. 9235889

    Mice lacking the gene encoding the receptor for prostaglandin F2alpha (FP) developed normally but were unable to deliver normal fetuses at term. Although these FP-deficient mice showed no abnormality in the estrous cycle, ovulation, fertilization, or implantation, they did not respond to exogenous oxytocin because of the lack of induction of oxytocin receptor (a proposed triggering event in parturition), and they did not show the normal decline of serum progesterone concentrations that precedes parturition. Ovariectomy at day 19 of pregnancy restored induction of the oxytocin receptor and permitted successful delivery in the FP-deficient mice. These results indicate that parturition is initiated when prostaglandin F2alpha interacts with FP in ovarian luteal cells of the pregnant mice to induce luteolysis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    HTS093C
  • Expression patterns and role of prostaglandin-endoperoxide synthases, prostaglandin E synthases, prostacyclin synthase, prostacyclin receptor, peroxisome proliferator-act ... 19060098

    To determine if changes in endometrial expression of the enzymes and receptors involved in prostaglandin (PG) synthesis and action might provide insights into the PGs involved in the initiation of decidualization, ovariectomized steroid-treated rats at the equivalent of day 5 of pseudopregnancy were given a deciduogenic stimulus and killed at various times up to 32 h thereafter. The expression of PG-endoperoxide synthases (PTGS1 and PTGS2), microsomal PGE synthases (PTGES and PTGES2), cytosolic PGE synthase (PTGES3), prostacyclin synthase (PTGIS), prostacyclin receptor, peroxisome proliferator-activated receptor delta (PPARD) and retinoid x receptor alpha (RXRA) in endometrium was assessed by semiquantitative RT-PCR, western blot analyses and immunohistochemistry. In addition, to determine which PG is involved in mediating decidualization, we compared the ability of PGE(2), stable analogues of PGI(2), L165041 (an agonist of PPARD), and docasahexanoic acid (an agonist of RXRA) to increase endometrial vascular permeability (EVP, an early event in decidualization), and decidualization when infused into the uterine horns of rats sensitized for the decidual cell reaction (DCR). EVP was assessed by uterine concentrations of Evans blue 10 h after initiation of infusions. DCR was assessed by the uterine mass 5 days after the initiation of the infusions. Because enzymes associated with the synthesis of PGE(2), including PTGS2, are up-regulated in response to a deciduogenic stimulus and because PGE(2) was more effective than the PGI(2) analogues and PPARD and RXRA agonists in increasing EVP and inducing decidualization, we suggest that PGE(2) is most likely the PG involved in the initiation of decidualization in the rat.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Despite transcriptional and functional coordination, cyclooxygenase-2 and microsomal prostaglandin E synthase-1 largely reside in distinct lipid microdomains in WISH epit ... 15983118

    Cytokine-induced prostaglandin (PG)E(2) synthesis requires increased expression of cyclooxygenase-2 (COX-2) in human WISH epithelial cells. Recently, an inducible downstream PGE synthase (microsomal PGE synthase-1, mPGES-1) has been implicated in this inflammatory pathway. We evaluated cooperation between COX-2 and mPGES-1 as a potential mechanism for induced PGE(2) production in WISH cells. Cytokine stimulation led to increased expression of both enzymes. Selective pharmacological inhibition of these enzymes demonstrated that induced PGE(2) release occurred through a dominant COX-2/mPGES-1 pathway. Unexpectedly, immunofluorescent microscopy revealed that the expression of these enzymes was not tightly coordinated among cells after cytokine challenge. Within cells expressing high levels of both mPGES-1 and COX-2, immunolabeling of high-resolution semithin cryosections revealed that COX-2 and mPGES-1 were largely segregated to distinct regions within continuous intracellular membranes. Using biochemical means, it was further revealed that the majority of mPGES-1 resided within detergent-insoluble membrane fractions, whereas COX-2 was found only in detergent-soluble fractions. We conclude that although mPGES-1 and COX-2 show transcriptional and functional coordination in cytokine-induced PGE(2) synthesis, complementary morphological and biochemical data suggest that a majority of intracellular mPGES-1 and COX-2 are segregated to discrete lipid microdomains in WISH epithelial cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB374
    Nombre del producto:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • Transport of eicosapentaenoic acid-derived PGE₃, PGF(3α), and TXB₃ by ABCC4. 25275481

    Eicosapentaenoic acid-derived prostaglandin (PG) E3, PGF(3α), and thromboxane (TX) B3 are bioactive lipid mediators which have anti-cancer and anti-inflammatory effects. To exert their effects, PGE3, PGF(3α), and TXB3 must be released to the extracellular space from cells, but the release mechanism has been unclear. We therefore investigated the contribution of ATP-binding cassette transporter C4 (ABCC4), which has been known as a prostanoids efflux transporter, to the release of PGE3, PGF(3α), and TXB3.ATP-dependent transport of PGE3, PGF(3α), and TXB3 via ABCC4 was investigated by using inside-out membrane vesicles prepared from ABCC4-overexpressing HEK293 cells. To evaluate the contribution of ABCC4 to the release of PGE3, PGF(3α), and TXB3, we measured the extracellular and intracellular levels of PGE3, PGF(3α), and TXB3 in A549 cells when we used ABCC4 inhibitors (dipyridamole, MK571, and probenecid) or ABCC4 siRNAs. The quantification of PGE3, PGF(3α), and TXB3 was performed by using liquid chromatography-tandem mass spectrometry.The apparent Km values for ABCC4-mediated transport were 2.9±0.1 µM for PGE3, 12.1±1.3 µM for PGF(3α), and 11.9±1.4 µM for TXB3 and the ATP-dependent accumulation of PGE3, PGF(3α), and TXB3 into vesicles was decreased by using typical substrates and inhibitors of ABCC4. ABCC4 inhibitors and ABCC4 knockdown showed the reduction of extracellular/intracellular ratio of PGE3 (40-60% of control) and PGF(3α) (60-80% of control) in A549 cells.Our results suggest that PGE3, PGF(3α), and TXB3 are substrates of ABCC4 and ABCC4 partially contributes to the release of PGE3 and PGF(3α).
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4
  • The proapoptotic BH3-only protein Bim is downregulated in a subset of colorectal cancers and is repressed by antiapoptotic COX-2/PGE(2) signalling in colorectal adenoma c ... 20348947

    Overexpression of cyclooxygenase-2 (COX-2) and elevated levels of its enzymatic product prostaglandin E2 (PGE(2)) occur in the majority of colorectal cancers and have important roles in colorectal tumorigenesis. However, despite the established prosurvival role of PGE(2) in cancer, the underlying mechanisms are not fully understood. Here, we have shown that PGE(2) suppresses apoptosis via repression of the proapoptotic BH3-only protein Bim in human colorectal adenoma cells. Repression of Bim expression was dependent upon PGE(2)-mediated activation of the Raf-MEK-ERK1/2 pathway, which promoted Bim phosphorylation and proteasomal degradation. Reduction of Bim expression using RNA interference reduced spontaneous apoptosis in adenoma cells and abrogated PGE(2)-dependent apoptosis suppression. Treatment of COX-2-expressing colorectal carcinoma cells with COX-2-selective NSAIDs-induced Bim expression, suggesting that Bim repression via PGE(2) signalling may be opposed by COX-2 inhibition. Examination of Bim expression in two established in vitro models of the adenoma-carcinoma sequence revealed that downregulation of Bim expression was associated with tumour progression towards an anchorage-independent phenotype. Finally, immunohistochemical analyses revealed that Bim expression is markedly reduced in approximately 40% of human colorectal carcinomas in vivo. These observations highlight the COX-2/PGE(2) pathway as an important negative regulator of Bim expression in colorectal tumours and suggest that Bim repression may be an important step during colorectal cancer tumorigenesis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB17003
    Nombre del producto:
    Anti-Bim Antibody, internal epitope, pan-Bim isoforms
  • Interleukin-6 synthesis in human chondrocytes is regulated via the antagonistic actions of prostaglandin (PG)E2 and 15-deoxy-Δ(12,14)-PGJ2. 22096605

    Elevated levels of interleukin-6 (IL-6), prostaglandin (PG)E(2), PGD(2) and its dehydration end product 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) have been detected in joint synovial fluids from patients with rheumatoid arthritis (RA). PGE(2) directly stimulates IL-6 production in human articular chondrocytes. However, the effects of PGD(2) and 15d-PGJ(2) in the absence or presence of PGE(2) on IL-6 synthesis in human chondrocytes have yet to be determined. It is believed that dysregulated overproduction of IL-6 is responsible for the systemic inflammatory manifestations and abnormal laboratory findings in RA patients.Using the T/C-28a2 chondrocyte cell line as a model system, we report that exogenous PGE(2) and PGD(2)/15d-PGJ(2) exert antagonistic effects on IL-6 synthesis in human T/C-28a2 chondrocytes. Using a synthesis of sophisticated molecular biology techniques, we determined that PGE(2) stimulates Toll-like receptor 4 (TLR4) synthesis, which is in turn responsible for the activation of the ERK1/2, PI3K/Akt and PKA/CREB pathways that phosphorylate the NF-κB p65 subunit leading to NF-κB activation. Binding of the activated NF-κB p65 subunit to IL-6 promoter induces IL-6 synthesis in human T/C28a2 chondrocytes. PGD(2) or 15d-PGJ(2) concurrently downregulates TLR4 and upregulates caveolin-1, which in turn inhibit the PGE(2)-dependent ERK1/2, PI3-K and PKA activation, and ultimately with NF-κB-dependent IL-6 synthesis in chondrocytes.We have delineated the signaling cascade by which PGE(2) and PGD(2)/15d-PGJ(2) exert opposing effects on IL-6 synthesis in human chondrocytes. Elucidation of the molecular pathway of IL-6 synthesis and secretion by chondrocytes will provide insights for developing strategies to reduce inflammation and pain in RA patients.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™